Functional categories: FLN or FLB?

Rose-Marie Déchaine & Mireille Tremblay
(University of British Columbia & Université de Montréal)

Hauser et al. 2002 distinguish FLN (Faculty of Language in the Narrow sense) from FLB (FL in the Broad sense). Syntactic theory distinguishes Lexical (L) from Functional (F) categories. We propose that there are two types of F-cats with the following properties: (i) FLN F-cats are universal, obligatory and type-rigid; FLB F-cats are not; (ii) FLN fixes a lower bound on categorical inventories (L-forms, D, T), but no upper bound; (iii) The number of F-cats is not fixed, contra Cinque (1999). Distinguishing FLN from FLB F-cats provides a solution to the following problems: (i) inventory; (ii) selection; (iii) ordering (iv) class size, and (v) gradience.

1. Unsolved problems relating to Functional categories

1.1 Universality: Only some F-cats are universally attested. Some analyses posit a universal F-cat inventory, and allow languages to differ according to whether F-cats are overt or covert (Cinque 1999). Other analyses parameterize F-cat inventories (Ritter & Wiltschko 2009).

1.2 Ordering: The idea that F-cats have a fixed order (Cinque 1999) fails to account for their ordering: some F-cats don’t have a fixed position (NEGATION, Ouhalla 1991; EVIDENTIALITY, Blain & Déchaine 2007); some forms don’t have a fixed F-cat realization (that is D or C).

1.3 Selection: Only some F-cats select for an L-cat: D selects N, T selects V (Abney 1987). Moreover, D and T categorize L-cats (1) (Borer 2005). Other F-cats are type-flexible: Squamish PLURAL (2) occurs on N or V, as does French QUANTITY (3), and Plains Cree ASPECT (4).

1.4 Class size: Some analyses equate closed-class with F-cat status (Abney 1987). But class size is not a reliable F-cat indicator, as any L-cat can be closed-class (Rijkhoff 2002b, Dixon 1982, Emonds 1985), including V (Australian), N (Northern Iroquoian), A (Niger-Congo), and P.

1.5 Gradience: Some forms are semi-lexical (Corver & van Riemsdijk 2001). Semi-lexical verbs include auxiliary, aspectual and light Vs. Semi-lexical Ns include classifier Ns (Rijkhoff 2002a) and measure Ns (Borer 2005). Semi-lexical As include size and quantity adjectives (Morzycki 2009). Semi-lexical Ps include grammatical and aspectual Ps (Zaring 1991, Zwarts 2005).

2. Our proposal: there are two types of F-categories

Hauser et al. (2002:1572ff.) suggest that FLB is based on mechanisms shared with nonhuman animals, while FLN is uniquely human and has been exapted from previous adaptive functions. The FLN/FLB distinction is mirrored in the F-cat system. All languages distinguish arguments from predicates (Gil 2005). Argument expressions arise when D Merges with an L-form to satisfy referential anchoring, (5)a. In the absence of referential anchoring, as property-denoting expressions, L-forms must be temporally anchored; this is satisfied by Merging T with an L-form, (5)b. This defines the lower bound: all languages have: (i) L-forms: (ii) argument
expressions (anchored by D); (iii) predicates (anchored by T). Recursive Merge derives transitive structures (6); as well as the distinction between predication and equation (7).

(7) a [T [[D L] [L]]] b [T [[D L] [L]]] PREDICATION/EQUATION

2.1 Solving the universality problem: Definiteness (D) and finiteness (T) define the core F-cats (Muysken 2008): they are conceptually necessary, and by hypothesis are FLN F-cats. They are universal (present in every language) and obligatory (present in every sentence). The set of FLN F-cats also includes argument-typing and clause-typing F-cats, e.g. Kase and Comp, (8). As for FLB F-cats: they are non-universal and non-obligatory: PLURAL, QUANTITY and ASPECT may be present but need not be; when present in a grammar, they need not be present in all sentences.

2.2 Solving the ordering problem: The type-rigid/type-flexible distinction solves the ordering problem. FLN F-cats, because they are type-rigid, necessarily occur in a fixed position. Argument-typing is possible only if an argument expression has been formed; clause-typing is possible only if a predicate expression is temporally anchored. In contrast, FLB F-cats are type-flexible and so may be introduced into any layer of the extended nominal or verbal projection.

2.3 Solving the selection problem: FLN F-cats are type-rigid and provide a unique context of identification. D provides a unique context of identification for argument expressions, T provides a unique context of identification for predicate expressions. In contrast, FLB F-cats are type-flexible and do not provide a unique context of identification: the F-cats PLURAL (2), QUANTITY (3) and ASPECT (4) combine with either argument or predicate expressions. The type-rigid/type-flexible distinction reflects FLN/FLB properties respectively. Because FLN F-cats are constrained by referential and temporal anchoring, they respect the argument/predicate divide, and strictly select for complement type. In contrast, FLB F-cats are not constrained in this way: they cross the argument/predicate divide and do not select for complement type.

2.4 Solving the class size problem: That L-cats can form closed-classes is consistent with vocabulary size being emergent (Hauser et al. 2002). All F-cats form a closed-class, but not all closed-classes are F-cats.

2.5 Solving the gradience problem: The existence of a semi-lexical closed-class within each L-cat—Borer’s (2005) “twilight zone”—is an outcome of recursive Merge.