Here I present new evidence of a “partial” indexical shift, as in the (1) from Tamil:

(1) raman\(_i\) \(\text{[CP}\) taan, poo.v.een(*aan)-nnu\) so.nn.aan
 raman \(\text{SE}_i\) go.FUT.1SG(*3SG)-that say.PST.3MSG
 “Raman said \(\text{[CP} \) that he, would go]”

The matrix subject in (1) is 3\(\text{MSG}\); the matrix verb denotes a speech-report and agrees in \(\phi\)-features with the matrix subject. The embedded clausal complement contains a subject which has traditionally been described as a 3SG \(\text{SE\}-anaphor (Annamalai, 1999): it is obligatorily coreferent with the matrix subject and interpreted obligatorily \(\text{de se}\). But the embedded verb which should agree with its clausemate subject surfaces not as 3\(\text{MSG}\) but with 1\(\text{SG}\) agreement.

Crucially and tellingly, such mismatched verbal agreement only seems to appear under matrix speech-event denoting verbs like \textit{SAY}; with all other clausal-complement taking verbs, we get the expected 3\(\text{MSG}\) on the embedded verb (2):

(2) raman\(_i\) \(\text{[CP}\) taan, poo.v.aan/(*een)-nnu\) kaanq\(\text{upi}\text{qi\text{.tt\text{.aan}}\)}
 raman\(_i\) \(\text{SE}_i\) go.FUT.3SG(*1SG)-that find-out.PST.3MSG
 “Raman found out \(\text{[CP} \) that he\(_i\) would go \)”

Why is subject-verb agreement obligatorily absent in (1) but obligatorily present in (2)? Consider the Zazaki structure (3) below (Anand and Nevins, 2004):

(3) H\(\text{seni}_j\) (mi_k-ra) va \(\epsilon z_j/k\) \text{dweletia}
 Hesen.OBL (OBL-TO said that I \text{rich.be-PRES}
 “Hesen said that \{I am, Hesen is\} rich.”

The indexical pronoun \(\epsilon z\) in (3) can refer to the speaker as is standard. But, just like the 1\(\text{SG}\) embedded-verb agreement in (1), it can also refer to the attitude-holder \textit{Hesen}. Also, the indexical shift in Zazaki (3), is induced only under the scope of a (language-specific) proper subset of intensional predicates (Schlenker, To appear) – just as with (1) vs. (2) above – suggesting that the embedded CP in (1) involves indexical shift. (4) confirms further that genuine indexical shift and not e.g. a quotative is involved. An NPI inside a quotative may not be licensed by an operator outside the quote – however, (4) is fully licit:

(4) raman taan, yenda tappu.m \(\text{senjeen-nnu ottukka.le}\)
 raman \(\text{SE}_i\) which mistake.even made-that admit.NEG
 “Raman, didn’t admit that he\(_{i,x,j}\) made any mistake.”

Nevertheless, there is one important difference between (1) and (3). The subject-verb person-feature mismatch in (1) obtains within the same embedded clause and not cross-clausally, as in (3). Problematically, the non-agreeing feature in (1) is on verbal agreement which, under standard assumptions for subject-verb agreement (Chomsky, 2001), is inherited from the subject and is not inherent. But the clausemate subject \textit{taan} itself shows different person-features (3rd) from that on the verb (1st)! A promising solution to this dilemma is initially suggested by Anand (2006)’s proposal that Malayalam \textit{taan} (featurally identical to Tamil \textit{taan}) is itself underlingly a 1st-person indexical because it yields obligatory \(\text{de se}\) readings. Tamil \textit{taan} behaves exactly like its Malayalam counterpart with respect to this diagnostic, suggesting that it is also a 1st-person indexical (albeit, crucially, a shifted one). If this is correct, we could claim that the 1st-person agreement on the embedded verb in (1) is merely be due to standard Agree between embedded T and 1\(\text{SG}\) DP in [Spec, TP]. We could try to extend Anand’s context-overwriting approach for the Tamil data using a parametrized context-shifting operator:

\[\[\text{OP}_{\text{auth}0}]^{i,j,g} = \lbrack 0 \rbrack^{j,i,g}, \text{where } j = \langle \text{Auth}(i), Addr(c), Time(c), World(c) \rangle.\] But there are
Table 1: **SPELL-OUT RULES IN A LATE INSERTION MODEL**

<table>
<thead>
<tr>
<th></th>
<th>[1, sg]</th>
<th>←→</th>
<th>-een</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR</td>
<td>[3, masc, sg]</td>
<td>←→</td>
<td>-aan</td>
</tr>
<tr>
<td></td>
<td>[1, sg]</td>
<td>←→</td>
<td>naan</td>
</tr>
<tr>
<td></td>
<td>[1, sg, -R]</td>
<td>←→</td>
<td>taan</td>
</tr>
<tr>
<td>PRONOUN</td>
<td>[2, sg]</td>
<td>←→</td>
<td>nii</td>
</tr>
<tr>
<td></td>
<td>[3, masc, sg, +R]</td>
<td>←→</td>
<td>avan</td>
</tr>
<tr>
<td></td>
<td>[3, fem, sg, +R]</td>
<td>←→</td>
<td>aval</td>
</tr>
</tbody>
</table>

two serious problems: 1. *taan* can only take 3rd-person antecedents. Such a restriction could be handled by claiming that context-shifting operators may only appear on embedding predicates marked 3rd person but, as Anand concedes, this is stipulative. 2. to account for “regular” subject-verb agreement in (2), Anand’s analysis would have to claim that *taan* is not an indexical but a logophor in such cases (inheriting its antecedent’s φ-features and transmitting these to the embedded verb (Kratzer, 2009)). However, *taan* in (2) is also interpreted obligatorily de se which, under Anand’s analysis, automatically means that it is also a 1st-person indexical – bringing us back to the original problem. **Solution:** The embedded CP in (1)/(2) represents an eventuality that is simultaneously 1st-person relative to the matrix subject, but 3rd-person relative to the utterance-context speaker. Thus, I propose that indexical shift on *taan* is not due to context-overwriting but due to simultaneous access to embedding and utterance contexts in the embedded cartographic C-layer (an idea used for deriving Double Access Readings for tense (Giorgi, 2010)). Specifically, in (2), both utterance and embedding contexts are present in the embedded C-layer, but in (1), only the latter is. Support for the idea that the embedded C-layer in (1) is smaller than that in (2) comes from the fact that the embedded CP in (1) can be replaced by a gerundival whereas that in (2) cannot (as easily). **Result:** the DP_embedded in (2) can be syntactically specified as both 1st (against Context_embedding: λc.Author(c)) and 3rd person (relative to Context_utterance). But the DP_embedded in (1) can only be specified 1st-person because a 3rd-person feature would not be evaluable against Context_utterance as this is absent and would crash. Spell-Out rules in Table 1 (including a -R syntactic feature encoding referential anaphoricity (Reinhart and Reuland, 1993) to distinguish indexicals like *taan* from purely deictic ones like *naan* (‘I’)) use different underspecification patterns for DP_embedded and Agr_embedded: thus, in (2) with [1,3], “3rd person” is inserted for Agr_embedded but *taan* is inserted for DP_embedded.

References