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Learning from Triggers 

Robert C. Berwick 
Partha Niyogi 

In this article we provide a refmed analysis of learning in finite parame- 
ter spaces using the Triggering Learning Algorithm (TLA) of Gibson 
and Wexler (1994). We show that the behavior of the TLA can be 
modeled exactly as a Markov chain. This Markov model allows us to 
(1) describe formally the conditions for learnability in such spaces, 
(2) uncover problematic states in addition to the local maxima de- 
scribed by Gibson and Wexler, and (3) characterize convergence times 
for the learning algorithms quantitatively. In addition, we present argu- 
ments questioning the psychological plausibility of the TLA as a learn- 
ing algorithm. 

Keywords: principles and parameters, learnability, Triggering Learn- 
ing Algorithm, Markov chains, local maxima, closed states 

1 Introduction 

Gibson and Wexler (1994; henceforth, G&W) take important steps toward formalizing the notion 
of language acquisition in a space whose grammars are characterized by a fimite number of 
parameters. One of their aims is to formalize and thereby completely characterize learnability in 
such spaces, using what they call the "Triggering Learning Algorithm" (TLA). For example, 
they demonstrate that even in such finite spaces, convergence via some sequence of positive 
examples ("triggers") may remain a problem, since it is still possible that under a single-step 
acquisition algorithm the learner can get stuck in a nontarget state. They then investigate several 
ways to avoid this "local maxima" problem, including some possibilities with linguistic conse- 
quences, such as default settings for parameter values (set first - V2; i.e., set the verb-second 
parameter "off") and "maturation" of parameter settings. 
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In this article we will refine G&W's work by providing a more complete and correct picture 
of learnability in finite parameter spaces. In particular: 

1. G&W's algorithm does not completely enumerate the full list of initial and final target 
grammars for which their learner fails to converge to a target grammar with probability 
1. That is, the algorithm in G&W's appendix A does not completely characterize the 
learnability properties of their example parameter space, or of finite parameter spaces 
generally. It is not the case that a TLA learner will converge with probability 1 from 
every (initial state, final state) grammar pair that G&W list as learnable. In fact, out of 
56 initial-final grammar state pairs, exactly 12 (as opposed to only the 6 that G&W list 
in their table 4, p. 426) are not learnable with probability 1. Importantly, the complete 
list includes some - V2 initial states, contrary to G&W's list in their table 4; see our 
table 1. 

2. We can identify the origin of the flaw in G&W's algorithm. G&W attempt to determine 
all initial states from which the learner will not converge to the target grammar (with 
probability 1). Let us call these problem states. G&W do this by computing all grammar 
states unconnected to the target grammar by some chain of positive examples (triggers). 
However, the correct way to find problem states is to compute those states connected to 
nontarget local maxima.' Crucially, these two ways of computing problem states are not 
equivalent, because some states might be connected both to the target and to nontarget 
local maxima (see our figure 1). By G&W's analysis, such states are not problem states; 
however, by our analysis, they are problem states, as we will show. For instance, in 
G&W's three-parameter example system (see their table 3), grammar 3 (Spec-final, Comp- 
first, - V2) is not listed as a problem state; yet starting at grammar 3, a TLA learner will 
not converge to target grammar 5 (Spec-first, Comp-final, - V2) (with probability 1). 
We show where in appendix A the algorithm goes awry-in step 3-and provide a correct 
version for G&W's three-parameter system. 

3. More constructively, we provide (as G&W note in their footnote 11) a more precise 
mathematical formulation of learnability in finite parameter spaces, as a Markov process, 
that avoids the pitfalls that G&W encounter. Appendices A and B of this article provide 
the explicit construction. The Markov formalization yields several benefits: 

* For the first time it becomes possible to measure the poverty of the stimulus exactly, 
in the sense that the (average) number of positive stimuli required to reach a target 
grammar can actually be counted. This can be used as a tool for measuring whether 
proposed learning algorithms and grammar space parameterizations lead to psychologi- 
cally plausible convergence times. For example, assuming a uniform distribution over 
G&W's input sentences, 35 (positive) examples are required on average to converge 
in their three-parameter system.2 (It should also be possible to measure the average 

1 As we discuss below, we put to one side the question of possible cycles in the grammar space. 
2 The standard deviation is 22. 
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number of grammar or hypothesis changes before convergence, but this work remains 
to be completed.) 

* It can also be determined whether proposed maturational solutions are psychologically 
plausible in the following sense. G&W propose to solve the local maxima problem in 
their three-parameter space by setting the V2 parameter to the default value - V2 and 
forbidding the learner to change this value until some number of examples have been 
encountered-maturation time. Note that here G&W crucially shift in footnote 28 from 
the criterion of convergence with probability 1 (Gold's (1967) criterion) to convergence 
with high probability, 1 - , where a can be made arbitrarily small by making matura- 
tion time arbitrarily large. We show how to compute a precisely as a function of 
maturation time. 

* We provide simple necessary and sufficient conditions for learnability, and a natural 
distinction between paths and links: we show that a "local" trigger is simply an ingoing 
link on the Markov chain (see figure 1). Local maxima are the same as the absorbing 
states of the Markov chain and so we can simply use existing mathematical theory to 
calculate these without error. 

* We show that if the learner drops either or both of the Greediness and Single Value 
Constraints, the resulting algorithm not only avoids the local maxima problem entirely 
but also converges faster (in the sense of requiring fewer examples) than the TLA. In 
light of this result, the question arises how strongly one should stick to these constraints, 
since some of these algorithms do not appear to violate any of the conservatism, cogni- 
tive load, and naturalness criteria that G&W advance as arguments for the Greediness 
and Single Value Constraints. 

2 Refining Gibson and Wexler's Analysis: A Complete Set of Problematic Initial 
Grammars 

G&W's TLA (and the algorithm in their appendix A) divides the set of all grammars into two 
disjoint sets: those that are connected to a chosen target grammar (via some chain of triggers) 
and those that are unconnected to the target grammar (by any chain of triggers). "Given the 
matrix of connected grammars, the local maxima fall out as simply the grammars that are not 
connected to their respective target grammars" (G&W 1994:452). 

If we explicitly draw out the topology implied by this algorithm, then for the case in which 
grammar 5 ("English"; SVO - V2) is the target, we arrive at the picture in figure 1. This picture 
tells almost all one needs to know about the learnability of the grammar space, and is of course 
identical to the connectedness calculation given by G&W in their appendix A. (Also see table 2 
in appendix B below, which gives the correspondence between surface unembedded phrase se- 
quences like SVO - V2 and G&W's binary parameter triples; this information is taken directly 
from G&W 1994 (see their table 3).) 

However, G&W's calculation does not correctly establish the list of initial states from which 
the learner will not converge to the target with probability 1. If there exists some path from an 
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Figure 1 
The eight parameter settings in G&W's example, shown as a Markov structure. Directed arrows 
between circles (states, parameter settings, grammars) represent possible nonzero (possible 
learner) transitions. The target grammar (in this case, number 5 (see table 2 of this article and 
table 3 of G&W 1994), setting [0 1 0]) lies at dead center. Surrounding it are the three settings 
that differ from the target by exactly one binary digit; surrounding those are the three settings 
that differ from the target by two binary digits; and the third ring out contains the single setting 
that differs from the target by three binary digits. Note that the learner can either cycle or step 
in or out one ring (binary digit) at a time, according to the single-step learning hypothesis; but 
some transitions are not possible because there is no input item to drive the leamner from one 
state to the other under the ThA. Numbers on the arcs denote transition probabilities between 
grammar states; these values are not computed by G&W's algorithm. 
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initial state to a nontarget state, then there is always some fmite probability that the learner will 
take this faulty path; thus, there is always some finite probability that the learner will not converge 
to the target (with probability 1). In the face of particularly "malicious" input distributions, this 
probability could in fact be very high, nearly 1, as we will show. Evidently, G&W assume that 
if a (triggered) path exists to the target, then it will be taken; however, this presumption is incorrect. 

Put another way, G&W do not compute transition probabilities between the grammars 
(states), and by their own assumptions, the determination of learnability crucially depends on 
whether the learner reaches a target grammar with probability 1 (the usual Gold-type assumption; 
see G&W 1994:433 fn. 28). It is therefore essential to calculate these transition probabilities, 
which are based on the transition probabilities from one grammar to another, given some target 
grammar and set of positive example sentences-for instance, the 12 "degree-O" strings such 
as S V, S V 0, and S Aux V 0 that are possible when the target grammar is grammar 5 ("English") 
in G&W's three-parameter example. In figure 1 we have labeled the grammar-to-grammar connec- 
tions with these probabilities; this turns out to be a straightforward calculation. Roughly, the 
probability of moving from one grammar Gi to another Gj is just a measure of the number of 
target grammar sentences-triggers- that are in Gj but not in G i, normalized by the total number 
of positive examples and the alternative grammars the learner can move to. In the case of finite 
sets, as in the three-parameter example G&W examine, this is a particularly simple calculation; 
for instance, since there are precisely 2 target strings, S V and Adv S V, that grammar 7 has but 
grammar 3 does not (grammar 3 does not contain any target grammar sentences; that is, L3 n 
Ls) = 0), the probability of moving from grammar 3 to grammar 7 is 2/12 * 1/3 = 1/18 (there 
are 3 alternative grammars that are 1 bit away from grammar 3). Note how this calculation 
explicitly demonstrates that the whole notion of triggering is a purely extensional one, in the 
sense that the calculation is based solely on the languages generated by the space of grammars; 
the transitions do not connect in any other logical way to the grammars themselves. 

Let us now consider figure 1 in more detail and describe how it characterizes learnability 
in G&W's three-parameter space. Given a target grammar at the center, an unlearnable initial 
grammar is one from which the learner will not converge to the target (with probability 1). 
G&W correctly show that states 2 and 4 are unlearnable in this sense. However, now consider 
state 3. Note that there is a path from this state to the target grammar 5. G&W assume that because 
this is the case, state 3 is not a problematic initial state. But in fact there is also a path that 
connects state 3 to grammar 2, a nontarget grammar. In other words, there is a positive (finite) 
probability that a learner starting in state 3 will converge to nontarget state 2, just as there is a 
finite probability that the learner will converge to target state 5. In fact, using the transition 
probabilities, we can calculate that a learner starting in state 3 converges to target grammar 5 
with probability exactly 0.6, not probability 1 as G&W require, and so converges to the nontarget 
grammar with probability 0.4. Note that this misconvergence probability is not insignificant. In 
sum, state 3 is not learnable under G&W's (Gold-type) assumption of convergence in the limit 
to the correct target grammar with probability 1. Note finally that state 3 is also a - V2 grammar, 
so that the set of problem states is not confmed to those that are + V2, contrary to the situation 
described by G&W. 
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Using this picture, we can also now readily interpret some of G&W's terminological notions. 
A local trigger is simply a datum that would allow the learner to move along an ingoing link in 
the figure. For example, the link from grammar state 3 to grammar state 7 does correspond to a 
local trigger, as does the link from grammar state 4 to grammar state 2; however, the link from 
grammar state 3 to grammar state 4 is not a local trigger. Also, because of the Single Value and 
Greediness Constraints, the learner can only either (a) stay in its current state; (b) move one step 
inward (a local trigger); or (c) move one step outward (note that this also happens given data 
from the target, just as in case (b)). These are the only allowed moves; the learner cannot move 
to another state within the same ring. 

The learnability properties of this space can also be described more formally once it is 
recognized (as G&W note (1994:412 fn. 11)) that the parameter space forms a Markov chain: 
that is, a finite set of states with appropriate transition probabilities (see Isaacson and Madsen 
1976 for a formal definition). In this Markov chain, certain states have no outgoing arcs; these 
are among the absorbing states because once the system has made a transition into one of these 
states, it can never exit. More generally, let us define the set of closed states to be any proper 
subset of states in the Markov chain such that there is no arc from any of the closed states to 
any other state in the Markov chain. 

Note that in the systems under discussion the target state is always an absorbing state (once 
the learner is at the target grammar, it can never exit), so the Markov chains we will consider 
always have at least one absorbing state. In the example three-parameter system, state 2 is also 
an absorbing state. Given this formulation, a very simple and now corrected criterion for the 
learnable initial states (with respect to some target grammar) can immediately be formulated. 

Theorem 1 Given a Markov chain C corresponding to a parameter space, a target parameter 
setting, and a TLA learner that attempts to learn the target parameters, there is exactly one 
absorbing state (corresponding to the target grammar) and no other closed state (distinct 
from and not including the target state) iff target parameters can be correctly set by the 
TLA in the limit (with probability 1). 

Proof Sketch ?. By assumption, C is learnable. Now assume for sake of contradiction that 
there is more than one closed state. Pick the closed state that is not the target state. If the 
learner starts in this state, it can never reach the target absorbing state, by the definition of 
a closed state. This contradicts the assumption that the space was learnable. 

=*. Assume that there exists exactly one absorbing state in the Markov chain M and 
no other closed state. There are two cases. Case (i): At some time the learner reaches the 
target state. Then, by defmition, the learner has converged and the system is learnable. Case 
(ii): There is no time at which the learner reaches the target state. Then the learner must 
move among a set of nontarget states. But this by definition forms a closed set of states 
distinct from the target, a contradiction.3' 

3 This argument can be made more precise by using the standard decomposition of a finite Markov chain into its 
transient states and closed equivalence classes of recurrent states, and then showing that all nontarget states are transient 
ones. This implies that the learner will be at a nontarget state with probability 0 in the limit and at the target state with 
probability 1. Such a formal argument is developed in Niyogi and Berwick, forthcoming. 
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Corollary 1 Given a Markov chain C corresponding to a TLA learner, the set of learnable 
initial states is exactly the set of states that are connected to the target and unconnected to 
the nontarget closed states of the Markov chain. 

We are now in a position to state and correct the flaw in the algorithm, step 3 of G&W's 
appendix A, that computes problem states. 

3. For each target grammar Gtarge,: 

For each source grammar Gsource: 
If Gtarget is not in CONNECTED-GRAMMARS (Gtargety Gsource) 

Then add the pair (Gsource, Gtarget) to LOCAL-MAXES. 

4. Return LOCAL-MAxES. (G&W 1994:450) 

This algorithm computes as unlearnable initial grammars those that are unconnected to the 
target grammar (implicitly, the learnable grammars are those that are connected to the target). 
But as we have just established, this is false. For example, consider state 4 in figure 1: this is 
unconnected to the target and so by G&W's algorithm it is unlearnable. Their conclusion is true; 
however, the reason for nonlearnability is not. State 4 is not learnable because it is connected to 
the nontarget absorbing state 2. 

Assuming Markov chains whose only closed states are absorbing states, as is the case in the 
three-parameter system, we can present a corrected version of G&W's algorithm for finding the 
complete set of problem states. A more complex revision would be required to handle Markov 
chains with closed states of other kinds (essentially, cycles). 

Get set LOCAL-MAXES returned by G&W's algorithm; 
For each Gtarget, 

For each GL such that (GL, Gtarget) E LOCAL-MAXES: 

For each Gsource, 

If GL E CONNECTED-GRAMMARS (Gtarget, Gsource) 

Then add (Gsource, Gtarget) to LOCAL-MAXES. 

This clearly carries out a different computation for LOCAL-MAXES, as noted above and shown 
in figure 1. Now we can compute a complete list of (initial state, target state) pairs such that the 
learner will not converge to that target grammar from that initial grammar (with probability 1); 
this list is shown in table 1. 

3 Consequences of the Revised Account 

3.1 The Single Value and Greediness Assumptions 

The remainder of G&W 1994 turns on the analysis of the local maxima problem, which is basically 
a consequence of G&W's adoption of the Single Value Constraint and the Greediness Constraint. 
It is therefore also crucial to examine the grounds for these assumptions, as G&W note. We 
consider Greediness first, and then the Single Value Constraint. 
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Table 1 
Complete list of problem states, that is, all combinations of starting grammar and target 
grammar that result in nonlearnability of the target. The items marked with an asterisk are 
those pairs not listed in G&W 1994. 

State of initial grammar Probability of not 
Initial grammar Target grammar (in Markov structure) converging to target 

(SVO - V2)* (OVS - V2) 0.5 
(SVO + V2) (OVS - V2) Absorbing state 1.0 
(SOV - V2)* (OVS - V2) 0.15 
(SOV + V2) (OVS - V2) Absorbing state 1.0 
(VOS - V2)* (SVO - V2) 0.33 
(VOS + V2) (SVO - V2) Absorbing state 1.0 
(OVS - V2)* (SVO - V2) 0.33 
(OVS + V2) (SVO - V2) 1.0 
(VOS - V2)* (SOV - V2) 0.40 
(VOS + V2) (SOV - V2) Absorbing state 1.0 
(OVS - V2)* (SOV - V2) 0.08 
(OVS + V2) (SOV - V2) Absorbing state 1.0 

3.1.1 Greediness Constraint Recall that the TLA is a greedy algorithm; that is, the learner will 
make a change in its parameter settings only if the new parameter setting allows it to analyze the 
input sentence whereas the current one does not. Does such a greediness assumption matter? 
G&W's arguments for the Greediness Constraint boil down to three: (a) conservatism-one should 
prefer small changes in the currently hypothesized grammar4 to larger changes; (b) cognitive 
load; and (c) linguistic naturalness. Let us consider each of these in turn, putting aside the Single 
Value Constraint for the moment to isolate the effects of Greediness. 

(a) Conservatism. Does Greediness entail conservatism? Note first that Greediness is not a 
"batch" constraint; that is, it applies, not to a set of sentences, but to a single sentence, the 
current input sentence. We must further distinguish between two kinds of conservatism: inten- 
sional conservatism, that is, small changes in parameter space or grammar space; and extensional 
conservatism, that is, small changes in the language the leamer can analyze (roughly, external 
"linguistic behavior"). Finally, note that unless some assumption is made about a "smoothness" 
relation between grammars and languages, these two notions remain distinct (small changes in 
grammar space need not translate into small changes in language space, and vice versa).5 

4Or, possibly, the currently hypothesized language. 
S In fact, it is not at all obvious what the relation between grammar/parameter space and language space is, a matter 

of some importance for any sentence-driven learning algorithm. As far as we know, this is a mathematically difficult 
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When we examine this point, we find that Greediness (without the Single Value Constraint) 
apparently allows the learner to make massive jumps through either grammar space or language 
space, contrary to what G&W desire. In the case of grammar space, the learner can make many 
parameter changes just to account for one sentence, the current datum. So Greediness by itself 
does not meet the test of grammar conservatism. This is to be expected. Depending upon the 
learner's current hypothesis, and depending upon the structure of the parameter space, Greediness 
could move the learner far away from its current hypothesis. In fact, a passage in which G&W 
justify the Single Value Constraint argues precisely the same point. 

The need to account for an unanalyzable input item can lead the learner to shift to a grammar that is 
nothing like the current one, thus allowing the possibility of a massive immediate change in her 
linguistic behavior. (G&W 1994:442) 

For example, in the three-parameter system, suppose the learner was in state 1 (Spec-final, 
Comp-final, - V2). A sentence of the form S V or S Aux V is in grammar state 4 but not grammar 
state 1. Therefore, the requirement to analyze this string could force the learner to state 4, the 
grammar farthest from the target and grammar 1. This is precisely the behavior that G&W wanted 
to avoid, and it arises precisely because Greediness holds. In short, we see no logical relation 
between Greediness and grammatical conservatism; rather, this conservatism is imposed by the 
Single Value Constraint. 

Turning to extensional conservatism, here too we find no necessary relation between Greedi- 
ness and small changes in language space (the set of sentences the learner can analyze at any 
one point). It is conceivable (as we show by example below) that there exist two grammars, G1 
and G2, such that extensionally G1 is closer to the target than G2, but Greediness forces the 
learner from G1 to G2.6 It is easy to see why: any sentences in G2 (and the target) presented to 
the learner would, by Greediness, drive the learnerfarther from the target, to G2. Whether or 
not this happens is not a property of Greediness (local hill-climbing); rather, it is a property of 
the language space. We cannot know whether Greediness on the average drives the learner closer 
to or farther away from the target-how far the learner moves and how fast-without actually 
calculating transition probabilities with respect to a specific space; note that these transition 
probabilities are dependent on extensional (language) set intersections. 

An example from the three-parameter system should make this point clear. Turning again 
to figure 1, note that grammars 6 and 7 are equidistant from the target in grammar space; they 
each differ from the target by one binary digit (one parameter setting). However, although grammar 
6 is quite close to the target in language space (it has 6 degree-O strings in common with the 

question that has not really ever been addressed, although perhaps some notion of approximation by power series, as 
proposed in works by, for example, Chomsky and Schutzenberger (1963), could prove relevant here. We are currently 
exploring this question since there is an abundant mathematical literature on functional approximation in such spaces. 

6 This presumes that it is possible to put a measure on the extensional properties of the "surface strings" like 
S V 0. This is clearly possible in the case of finite sets; it is also possible for infinite sets if certain measurability conditions 
are met. A discussion of these technical details would lead us too far afield at this point. 
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target, out of 12), grammar 7 is farther away in language space (it has only 2 degree-0 strings in 
common with the target: S V, Adv S V). (This example also demonstrates our point that one cannot 
assume any kind of necessarily smooth relation between grammar space and language space.) 

Now, again crucially assuming no Single Value Constraint, if the learner is in state 6 and 
is then presented with the example Adv S V, by Greediness it will be forced to move to state 
7-farther away from the target in language space. 

In sum, Greediness has nothing to do with either grammar or language conservatism. 
(b) Resource limitations. Does Greediness help the leamer in terms of cognitive or computa- 

tional resources, that is, time or space (or variants thereof, such as memory load)? Implicitly, one 
of G&W's ideas here seems to be that without Greediness the learner might wander all over the 
parameter space before converging, hence taking more time. 

Without the Greediness Constraint, the learner can radically alter her grammatical hypothesis very 
quickly, no matter how close to the target she has come. For example, suppose that the learner has 
set all but one of her parameters correctly, and that she is presented with a sentence pattern from the 
target grammar that is not in the current grammar. A nongreedy learner might change any of the 
parameters because of the unanalyzable data.... Lacking the Greediness Constraint makes learning 
the grammar very difficult: a leamer might be next to the target many times over, each time with a 
different parameter set incorrectly, before she fmally accidentally achieves the target. (G&W 1994: 
443) 

However, is this true in fact? Intuitively, although Greediness allows the leamer to "spiral 
away" from the target, it might also allow the leamer to "spiral in." Once again, the exact 
balance between the two cannot be detenmined via intuition. One must either carry out a formal 
proof or do sample calculations. For calculations, once again we need the actual transition probabil- 
ities. In fact, when we carry out simulations on the three-parameter space, we discover that a 
nongreedy leamer is indeed faster than G&W's greedy learner, as shown in figure 2. 

Further, not only does the greedy algorithm take more time, there is also a sense in which 
it requires more computation at any single step than a nongreedy one. Suppose the leamer has 
received a sentence and is not able to analyze it in its current state. Greediness requires detennining 
whether the new grammar can allow the learner to analyze the input or not. Nongreediness does 
not need to carry out this test; the learner can simply move to another state. 

G&W also aim to keep memory load low by using an incremental algorithm that processes 
only one sentence at a time, rather than a batch algorithm that stores up many sentences and 
processes them as a group. Behind this assumption lies one about cognitive/memory load: the 
learner should not have to keep many sentences in memory, which seems reasonable enough. 

However, this point is orthogonal to the question of Greediness, because all the variants that 
we consider in figure 2 and that do better than the greedy algorithm are also incremental. For 
instance, take the simplest possible algorithm variant, which we will call Random Step (that is, 
an algorithm with no Greediness Constraint but with the Single Value Constraint). With Random 
Step, if the learner is in some grammar state and receives a sentence it cannot analyze, it simply 
picks a grammar state at random to move to (no more than one parameter setting away from the 
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Figure 2 
Convergence rates for different learning algorithms when L1 is the target language. The curve 
with the slowest rate (large dashes) represents the TLA. The curve with the fastest rate (small 
dashes) represents the algorithm Random Step with no Greediness Constraint or Single Value 
Constraint. Rates for Random Step with either the Greediness Constraint or the Single Value 
Constraint lie between these two and are very close to each other. The curves for cases where 
the target is some language other than L1 are similar, though not depicted here; Random Step 
generally dominates the TLA. 

current grammar). This algorithm also processes only one sentence at a time; further, as noted 
above, its cognitive load is actually less than that of the ThA. Yet Random Step works faster 
than the ThA in the three-parameter space, and it does not incur any local maxima problems. 
Other incremental learning algorithm variants also work faster. 

In short, we do not see any substantive argument for Greediness on computational/cognitive 
resource grounds either. Our simulations show that not only do nongreedy learners learn faster, 
contrary to G&W's intuitions, they also never get stuck. They can also be conservative. Nongreedi- 
ness would therefore seem to have all the advantages of Greediness and none of its disadvantages, 
at least with respect to learning time. 

(c) Linguistic naturalness is thus the remaining possible argument for Greediness. We have 
been unable to think of a good definition or concrete examples for linguistic naturalness. 

3.1.2. Single Value Constraint G&W also advance arguments for changing only one parameter 
value at a time: again, conservatism, cognitive load, and naturalness. Here we agree that the 
Single Value Constraint does support the properties of conservative hypothesis formation (at least 
in grammar space, not necessarily in language space) and cognitive load. 
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It is clear that the Single Value Constraint enforces grammatical conservatism. The learner 
moves at most one step in parameter (grammatical hypothesis) space. However, bearing in mind 
our earlier discussion on the "smoothness" properties of grammar parameter space, it is difficult 
to predict whether any kind of language conservatism follows as a result. 

When we consider cognitive load, it is not immediately clear whether dropping the Single 
Value Constraint would dramatically increase the resources the learner has to use. For example, 
G&W argue that 

[t]he Single Value Constraint, coupled with the constraint that allows only one new grammatical 
hypothesis to be formed and tested per input item, ensures that only limited resources are necessary 
at each step in the parameter-setting process. (G&W 1994:442) 

The constraint that only one new grammatical hypothesis be formed and tested per input 
item is distinct (as G&W themselves admit) from the Single Value Constraint. It is this incremental 
data constraint that lightens the cognitive burden on the leamer and could just as well be maintained 
while dropping the Single Value Constraint. For instance, doing Random Step incremen- 
tally-moving to only one new grammar state at a time-imposes the same computational 
burden.7 

3.2 Sample Complexity or the Poverty of Stimulus Revisited 

Our Markov analysis goes beyond clarifying the asymptotic (in the limit) learnability properties 
of the TLA and parameter spaces. It also sheds valuable light on the sample complexity of the 
language acquisition problem. Specifically, it allows us to actually count the number of sentences 
the child will have to hear before converging to the target with high probability-that is, it actually 
measures the number of stimuli needed in the "poverty of stimulus" sense. Recall that the TLA 
learner moves from state to state according to the transition probabilities described earlier. Suppose 
the learner starts out in some state i of the chain. After receiving m examples, the learner might 
be in one of a number of states. Using Markov chain theory, it is possible to exactly compute 
pi(m), the probability that the learner is in the target grammar after m examples. Clearly, learnabil- 
ity requires that 

Vi, lim pj(m) = 1, 

in other words, with probability 1, that the learner will converge to the target. Figure 2 shows a 
plot of pi(m) for the most unfavorable starting state (most unfavorable i) as a function of m. In 
this case, the target language is L1 and there are no local maxima; in other words, the learner 
converges from every starting state. Here we see that the probability that the learner has arrived 

7 One might finally argue that changing more than one parameter at a time is computationally more complex than 
changing a single parameter; however, flipping just two parameter switches at a time instead of one imposes a minimal 
additional burden. It is of course stronger to assume one possible change instead of two, and one is the natural stopping 
point if there is no other known limit, but the question needs more examination. There could be some trade-off between 
convergence time and number of data examples that can be examined at one step. 
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at the target after 100 examples is almost 1. This analysis thus allows us to quantify the sample 
complexity of the problem, precisely the poverty of the stimulus. 

The sample complexity of language acquisition is of crucial importance; it has not often been 
explicitly addressed.8 Most research tends to concentrate on learnability in the limit. However, an 
adequate computational model of language acquisition must not only converge to the target in 
the limit but also do so in reasonable time with a suitably small number of examples. After all, 
the poverty of stimulus that the human child experiences during language acquisition is what 
motivated the development of more constrained models of linguistic structure and is at the heart 
of the rationalist approach to linguistics. Given the mathematical formulation presented here, 
average and standard deviations for convergence times can be computed with respect to different 
sample distributions, that is, different distributions of positive example inputs the learner would 
receive. As far as we know, this is the first such analysis that has been advanced. Critical questions 
remain, of course: for one thing, one would like to know what the sample complexity is for a 
"real" parameter space, in other words, what happens to the convergence time as the number of 
parameters grows. If the TLA (or Random Step) requires an exponential number of positive 
examples given actual input distributions, that could to our minds violate a cognitive fidelity 
criterion, similar to the one about degree-O sentences or cognitive load.9 

4 A Note on Gibson and Wexler's Maturational Solution 

As a consequence of our precise Markov model, we are able to compute convergence times in 
a variety of situations. We have already remarked on how to do this in the general case when 
there are no default parameters (that is, all parameters are open to change by the learner). This 
yields the Markov structure of figure 1. G&W propose a maturational solution to the local maxima 
problem. In particular, they suggest that the V2 parameter be set to a default value of - V2 and 
that the learner not be allowed to change it until some period of (maturational) time has elapsed; 
after this time, all parameters are available to the learner. 

With respect to our Markov structure this suggestion has two effects: 

1. It restricts the learner to start in only the - V2 states of the chain; in figure 1 this 
corresponds to restricting starting conditions to states 1, 3, 5, and 7. 

2. All links from - V2 to + V2 are eliminated. Thus, the link from state 3 to state 4 is 
eliminated, as is the link from state 7 to state 8. 

The topology and corresponding transition probabilities of the constrained Markov chain 
can now be recomputed as before. Since the learner never reaches local maxima before maturation 
time has elapsed, the problem of getting stuck in an absorbing state never arises. However, some 
of the - V2 states are still problematic; as discussed earlier, the learner could be in one of those 

8 But see Osherson, Stob, and Weinstein 1986:chap. 8 for one general formalization, dubbed "text efficiency," that 
allows for the existence of abstract sample complexity hierarchies. However, the actual sample complexity bounds are 
not in general explicitly constructed. 

9 Using the Markov model, one should also be able to develop a mathematical analysis for the average number of 
"grammar changes" the leamer makes before arriving at the target grammar-a useful measure of conservatism. Such 
results are typically available in Markov theory, so it should be possible to calculate something similar here; we are 
currently developing this approach. We thank Janet Fodor for this suggestion. 



618 REMARKS AND REPLIES 

problematic states even after maturation. In this case the learner would not converge to the target 
with probability 1. Thus, if a finite maturation time is allowed (say, time t), then the learner will 
not converge to the target with probability 1, but instead will converge only with probability 
1 - 8, where 8 (the residual probability of misconvergence) depends upon the time t and goes 
to 0 as t goes to infinity. This fact is noted by G&W as a "crucial assumption" (1994:433 fn. 
28) and in fact marks a shift, as they say, from Gold's definition of identification in the limit 
with probability 1 to identification with probability less than 1. That is, the maturational solution 
G&W propose works by dropping their initial assumption of identification in the limit. 

Once Gold's assumption is dropped, to judge the psychological plausibility of the matura- 
tional solution it becomes necessary to quantify the relation between maturation time t and 8. 
This again demands some calculations. 

As a concrete example of the power of our formulation, we can carry out a simple calculation 
to show what the relation between maturational time t and 8 is like. Imagine that the learner starts 
out in state 3, a permissible - V2 starting state. As a result of maturational constraints, the link 
from state 3 to state 4 is eliminated and only two loops from state 3 are left in the revised Markov 
chain. It can be shown that the learner will, with probability 31/36, remain in grammar state 3 
after a single input and will, with probability 5/36, move to state 7. The probability that after t 
inputs (corresponding to maturation time) the learner still remains in state 3 is simply (31/36)t. 
Now the V2 parameter becomes active, the complete Markov chain of figure 1 reigns, and the 
learner will with probability 2/5 (by our previously shown computations) converge to state 2 and 
thus never reach the target. Thus, the total probability of not converging to the target in the 
maturational case is 2 

(136-). This will be greater than 8 if t is less than l/log(36/31) log (2/58). 
Thus, t is O(In(l/5)). Computations like this can be carried out for each state precisely because 
of our Markov formulation.10 

5 Conclusion 

In this article we have tried to show that a complete analysis of learnability in parameter spaces 
hinges on a more precise probabilistic analysis than that presented by G&W. The reanalysis is 
revealing. Simple incremental algorithms like Random Step converge faster than the TLA, can 
be conservative, and yet do not suffer from G&W's local maxima problem. To this extent, the 
whole problem of local maxima taken up by G&W is more apparent than real, and G&W's 
proposed solutions are unneeded.11 

10 Why does G&W's maturational solution work? G&W seem to say that it works because all the local maxima are 
+ V2. 

Note that each of the local maxima has the V2 parameter set to + V2 and that the target grammar in each case has the V2 parameter 
set to - V2. As a result of this pattern, it turns out that local maxima can be avoided altogether if the V2 parameter has the default 
value - V2, and the values for the other two parameters are initially unset. (G&W 1994:430) 

However, as we have just shown, this presumption is false (see also table 1). Some local maxima have the V2 parameter 
set to - V2. Fortunately, it is the case that all the strictly absorbing states are + V2. This is the real reason why the 
default setting/maturational argument works. 

1 It should be pointed out that Random Step's superiority in this case might be due entirely to the choice of parameters, 
that is, to the shape of the hypothesis space. For some other parametric space, Random Step might not converge faster; 
however, it will always avoid the local maxima problem. 



REMARKS AND REPLIES 619 

Despite these differences that ensue, we would like to point out that many of G&W's argu- 
ments are correct in spirit. For example, the local maxima issue is indeed central to the learnability 
question and triggers in a parametric framework. However, the reasoning needs to be complete. 
If anything, our own attempts to formulate a correct learnability convergence proof show how 
subtle a seemingly intuitive idea like convergence in a finite space can be. Intuitions must be 
backed by exact formulations. 

Perhaps the most important other difference that emerges from our reanalysis of G&W 1994 
is that as far as we can tell, the Greediness assumption does not seem to have foundation. This 
also renders the local maxima problem moot. 

Appendix A: Derivation of the Transition Probabilities 

We have argued that the TLA working on finite parameter spaces reduces to a Markov chain. 
This argument cannot be complete without a precise computation of the transition probabilities 
from state to state. We do this now. 

Consider a parametric family with n Boolean valued parameters. These define 2' grammars 
(and by extension, languages), as we have discussed. Let the target language L, consist of the 
strings (sentences) sl, S2, ... , that is, 

Lt = (SI, S2, S3, ..*.* C: S 

Let there be a probability distribution P on these strings,12 according to which they are drawn 
and presented to the learner. Suppose the learner is in a state s corresponding to the language L, 
Consider some other state k corresponding to the language Lk. What is the probability that the 
TLA will update its hypothesis from Ls to Lk after receiving the next example sentence? First, 
observe that as a result of the Single Value Constraint, if k and s differ by more than one parameter 
setting, then the probability of this transition is 0. As a matter of fact, the TLA will move from 
s to k only if the following two conditions are met: (a) the next sentence it receives (say, w, which 
occurs with probability P( w)) is analyzable by the parameter settings corresponding to k and not 
by the parameter settings corresponding to s, and (b) upon being unable to analyze w, the TLA 
has a choice of n parameters to change, and it picks the one that would move it to state k. 

Event (a) occurs with probability XELk\S P(w) whereas event (b) occurs with probability 
l/n since the parameter to change is chosen uniformly at random out of the n possible choices. 
Thus, the cooccurrence of both of these events yields the following expression for the total 
probability of transition from s to k after one step: 

P[s - k] = (lIn)P(sj). 
sj,LEssjELk 

12 ThS is equivalent to assuming a noise-free situation, in the sense that no sentence outside of the target language 
can occur. However, one could choose malicious distributions so that all strings from the target were not presented to 
the learner. If one wished to include noise, one would only need to consider a distribution P on l:* rather than on the 
strings of L,. Everything else in the derivation would remain identical. This would yield a Markov chain corresponding 
to the TLA operating in the presence of noise. 
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Since the total probability over all the arcs out of s (including the self loop) must be 1, the 
probability of remaining in state s after one step is 

P[s --- s] = I - 2P[s -bk]. 
k is a neighboring state of s 

Finally, given any parameter space with n parameters, we have 2n languages. Fixing one of 
them as the target language L, we obtain the following procedure for constructing the correspond- 
ing Markov chain. Note that this will yield a Markov chain with the same topology (in the absence 
of noise) as the procedure that G&W propose. However, our procedure differs significantly from 
G&W's in adding a probability measure on the language family. 

* (Assign distribution) First fix a probability measure P on the strings of the target language 
Lt. 

* (Enumerate states) Assign a state to each language (i.e., each Li). 
* (Take set differences) Now, for any two states i and k, if they are more than 1 Hamming 

distance apart, then the transition P[i -. k] = 0. If they are 1 Hamming distance apart, 
then P[i -k] = IP(Lk\ Li). 

Appendix B: Example Calculation 

For the three-parameter system studied by G&W, the transition probabilities can be computed 
straightforwardly according to the procedure outlined above. Consider, for example, the transition 
from grammar state 3 (OVS - V2) to grammar state 7 (SOV - V2) when the target is state 5 
(SVO - V2). This is shown in figure 1. According to G&W's data reproduced in table 2, there 
are 12 sentences in the target that the learner is likely to receive. If these sentences occur with 
equal likelihood, then the learner will move to grammar state 7 if and only if the following two 
events occur: 

Event 1 
A sentence occurs that can be analyzed by grammar state 7 but not by grammar state 3. 
There are two such sentences; consequently, the probability of this event is 12 

Event 2 
Given the occurrence of event 1, the learner will attempt to change one of the parameters 
at random. Of the three parameters it can change, only the "Spec" parameter will move it 
to grammar state 7. This occurs with probability 

1 
if the learner changes the parameter 

uniformly at random. 

Hence, the transition from state 3 to state 7 occurs when both events 1 and 2 occur. The total 
probability of this is j2 * 1=m This is how the transition probability of figure 1 is obtained. 
Other transition probabilities are obtained in similar fashion. 

Appendix C: Unembedded Sentences for Parametric Grammars 

Table 2 provides the unembedded (degree-0) sentences from each of the eight grammars (lan- 
guages) obtained by setting the three parameters to different values (see G&W 1994:tab. 3). The 
languages are referred to as L1 through L8. 
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Table 2 
The eight grammars defmed by G&W, along with their associated parameter settings and 
unembedded surface strings. (See G&W 1994:tab. 3.) 

Language Spec Comp V2 Degree-0 unembedded sentences 

LI 1 1 0 VS,VOS,VO1 02S 
VOS-V2 Aux V S, Aux V O S, Aux V 01 02 S, Adv V S 

Adv V 0 S, Adv V 01 02 S, Adv Aux V S 
Adv Aux V 0 S, Adv Aux V 01 02 S 

L2 1 1 1 S V, S V 0, 0 V S, S V 01 02, 01 V 02 S, 02 V 01 S 
VOS+V2 S Aux V, S Aux V 0, 0 Aux V S 

S Aux V 01 02, 01 Aux V 02 S, 02 Aux V 01 S 
Adv V S, Adv V 0 S, Adv V 01 02 S 
Adv Aux V S, Adv Aux V 0 S, Adv Aux V 01 02 S 

L3 1 0 0 V S, 0 V S, 02 01 V S 
OVS-V2 V Aux S, O V Aux S, 02 01 V Aux S, Adv V S 

Adv 0 V S, Adv 02 01 V S, Adv V Aux S 
Adv 0 V Aux S, Adv 02 01 V Aux S 

L4 1 0 1 SV,0VS,SV0,SV0201,01 V02S,02V01 S 
OVS + V2 S Aux V, S Aux O V, O Aux V S 

S Aux 02 01 V, 01 Aux 02 V S, 02 Aux 01 V S 
Adv V S, Adv V 0 S, Adv V 02 01 S 
Adv Aux V S, Adv Aux 0 V S, Adv Aux 02 01 V S 

L5 0 1 0 SV,SVO,SV 0102 
SVO-V2 S Aux V, S Aux V 0, S Aux V 01 02, Adv S V 

Adv S V 0, Adv S V 01 02, Adv S Aux V 
Adv S Aux V 0, Adv S Aux V 01 02 

L6 0 1 1 S V, S V 0, 0 V S, S V 01 02, 01 V S 02,02 V S 01 
SVO + V2 S Aux V, S Aux V 0, 0 Aux S V 

S Aux V 01 02, 01 Aux S V 02, 02 Aux S V 01, 
Adv V S 

Adv V S 0, Adv V S 01 02, Adv Aux S V 
Adv Aux S V 0, Adv Aux S V 01 02 

L7 0 0 0 SV,SOV,S0201 V 
SOV-V2 SVAux,SOVAux,S0201 VAux,AdvSV 

Adv S 0 V, Adv S 02 01 V, Adv S V Aux 
Adv S 0 V Aux, Adv S 02 01 V Aux 

L8 0 0 1 S V, S V 0, 0 V S, S V 02 01, 01 V S 02,02 V S 01 
SOV+V2 S Aux V, S Aux O V, O Aux S V 

S Aux 02 01 V, 01 Aux S 02 V, 02 Aux S 01 V 
Adv V S, Adv V S 0, Adv V S 02 01 
Adv Aux S V, Adv Aux S 0 V, Adv Aux S 02 01 V 



622 REMARKS AND REPLIES 

References 

Chomsky, Noam, and Marcel P. Schutzenberger. 1963. The algebraic theory of context-free languages. In 
Computer programming andformal systems, ed. P. Braffort and D. Hirschberg, 118-161. Amsterdam: 
North-Holland. 

Clark, Robin, and Ian Roberts. 1993. A computational model of language learnability and language change. 
Linguistic Inquiry 24:299-345. 

Gibson, Edward, and Kenneth Wexler. 1994. Triggers. Linguistic Inquiry 25:407-454. 
Gold, E. Mark. 1967. Language identification in the limit. Information and Control 10:447-474. 
Isaacson, David, and John Madsen. 1976. Markov chains. New York: Wiley. 
Niyogi, Partha, and Robert Berwick. 1993. Formalizing triggers: A learning model for finite spaces. AI 

memo 1449, CBCL Memo 86. MIT, Cambridge, Mass. 
Niyogi, Partha, and Robert Berwick. Forthcoming. A language learning model for finite parameter spaces. 

Cognition. 
Osherson, Daniel, Michael Stob, and Scott Weinstein. 1986. Systems that learn. Cambridge, Mass.: MIT 

Press. 
Wexler, Kenneth, and Peter Culicover. 1980. Formal principles of language acquisition. Cambridge, Mass.: 

MiT Press. 

Center for Biological and Computational Learning 
E25-201 
45 Carleton Street 
MIT 
Cambridge, Massachusetts 02139 

berwick@ai.mit.edu 
pn@ai.mit.edu 


	Article Contents
	p. 605
	p. 606
	p. 607
	p. 608
	p. 609
	p. 610
	p. 611
	p. 612
	p. 613
	p. 614
	p. 615
	p. 616
	p. 617
	p. 618
	p. 619
	p. 620
	p. 621
	p. 622

	Issue Table of Contents
	Linguistic Inquiry, Vol. 27, No. 4 (Autumn, 1996), pp. 531-749
	Volume Information [pp. 737-749]
	Front Matter
	Ergativity: Toward a Theory of a Heterogeneous Class [pp. 531-604]
	Remarks and Replies
	Learning from Triggers [pp. 605-622]
	On the Use of Triggers in Parameter Setting [pp. 623-660]
	Partial Agreement and Coordination [pp. 661-676]
	Remarks on the Binding Properties of Wh-Pronouns [pp. 676-707]

	Squibs and Discussion
	Alignment and Fricative Assimilation in German [pp. 709-719]
	On the Comprehension/Production Dilemma in Child Language [pp. 720-731]

	Books and Journals Received [pp. 733-735]
	Back Matter



