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1 Introduction

Work in morphology learning has thus far been primarily divided into two
lines of research: cognitively-motivated models of morphology learning, which
attempt to model human development and competency, and engineering-oriented
models, which attempt to maximize application performance. In this paper we
address the gap between these approaches by presenting results from applying the
learning model presented in (Chan, 2008) to child-directed data and comparing its
learning process to research in child language acquisition.

The first prominent computational model to address the learning of morphol-
ogy in a manner aligned with research in child development was the connectionist
model presented in (Rumelhart and McClelland, 1986). This model exhibits the
same U-shaped learning patterns (Ervin and Miller, 1963) during training as chil-
dren learning the English past tense. But while it replicates a development pattern,
the model makes unpredictable errors that are unattested in child learning when
trying to handle regular forms (Pinker and Prince, 1988). Rule-only theoretical
models such as the Rules over Words model (Yang, 2002) avoid this problem by
expressing both regulars and irregulars as rules, with irregular rules only applying
to memorized lexical entries. A model such as Words and Rules (Pinker, 1999)
presents a mixture of rule-based and associative models, for handling default rules
and classes of irregular forms, respectively.

An important distinction to make in evaluating the appropriateness of learn-
ing models for language acquisition tasks is the level of supervision required.
Unsupervised approaches to morphology learning use an unannotated corpus for
input. Supervised approaches have focused on learning only a single inflection,
such as the English past tense, using explicit word pairs as input such as go/went,
make/made, bake/baked. To use a word pair-based approach in acquisition, a child
learner would need to discover these words pairs from input, a process that is
largely unexplored. While there is evidence that clustering-based approaches can
identify sets of morphologically related words (Parkes et al., 1998; Wicentowski,
2002), little work has been done to attempt to extract the high-accuracy word pairs
required by single-inflection learners. Thus while cognitively-motivated models
have had success in replicating phenomena related to language acquisition, they
have thus far not done so in an unsupervised setting.

Unsupervised learning of morphology is well-studied in engineering-oriented



models. These models have focused on segmentation-based approaches, most
commonly using simple transitional probability heuristics (Harris, 1955; Keshava
and Pitler, 2006), or n-gram-based statistical models (most recently Spiegler et al.,
2009, among many others). Often segmentation-based approaches rely on min-
imum description length-based approaches to guide the appropriate amount of
segmentation (Brent et al., 1995), or organize the segmentations learned into
paradigms (Goldsmith, 2001; Monson, 2008). While the use of paradigms cre-
ates what appears to be a useful organization of the learned rules, recent work
questions the learnability of paradigms or item-based representations from real-
istic input due to the quantitative sparseness of data available to learners (Chan,
2008).

While these engineering-oriented models have been found to be capable of
discovering morphological structure in a language, their relevance to language
acquisition is questionable. The success of transitional-probability based models
and experimental evidence in word segmentation that indicates humans are able to
use transitional probabilities in artificial language learning (Saffran et al., 1996a,b)
suggest that transitional probabilities could play a role in acquisition. But the load
of computing transitional probabilities in an on-line fashion is high, and the per-
formance of transitional probabilities when used alone is relatively poor (Gambell
and Yang, 2006).

Bayesian approaches (Frank et al., 2008; Goldwater et al., 2006; Johnson
et al., 2007; Naradowsky and Goldwater, 2009) of morphology learning retain the
linguistic focus of cognitively-oriented models but differ in that they are trained
in an unsupervised fashion, using a prior to guide the learner toward a desirable
target. The computational load of such approaches is very high, requiring many
iterations over the data as it gradually converges on the desired parameter set.

Models that rely on statistical optimization suggest that a learner would ex-
hibit a broad, poor competence at first that varies in behavior as it converges to
optimal parameters. This does not, however, align with development studies that
suggest children acquire morphological inflections one at a time (Brown, 1973).

To address the gap between cognitive and computational models of morpho-
logical acquisition, we believe that a model must learn a psychologically plausi-
ble representation, demonstrate good performance on child-directed corpora, and
learn in a fashion that parallels the developmental progression seen in children
(see Yang, 2002). As the psychological plausibility of the model presented here
has been extensively discussed in (Chan, 2008, chapter 4), in this work we demon-
strate the model and algorithm’s effectiveness at learning from child corpora and
the correlations between its learning sequence and that of children.

2 A Model and Algorithm for the Unsupervised Learning of Rules

In this section we present an algorithm to learn the morphological rules of a
language in a fully unsupervised fashion from input. We first present a model of



1. Place all words in the corpus in the Unmodeled set and create empty Base and
Derived sets.

2. Until a stopping condition is met:

(a) Count suffixes in words of the Base ∪ Unmodeled set and the Unmodeled
set.

(b) Hypothesize transforms from words in Base ∪ Unmodeled to words in
Unmodeled.

(c) Select the best transform.

(d) Move the bases used in the transform to the Base set and the derived forms
used by the transform to the Derived set.

Figure 1: The learning algorithm

rule-based morphology and then an algorithm to train the model from a corpus.
Both the model and algorithm were originally presented in (Chan, 2008).

2.1 The Base and Transforms Model

The Base and Transforms model allows for the representation of morpholog-
ically related words in a generative fashion by defining a base set of words and a
set of transforms that can change the base into its derived forms. Transforms are
acquired in a frequency-driven learning process, but the model itself is a discrete,
non-probabilistic representation.

A set of morphologically related words can be represented as a single base
form and one or more derived forms that can be created from the base through
transforms. For example, the word bake will be the base form for the derived
forms baked, baking, and bakes. A transform is a rewrite rule applied a base to
create a derived form. A transform is defined as two affixes (s1, s2), where s1 is
removed from the base before concatenating s2. We represent a null affix as $.

A transform also has a corresponding word set, which is the set of base-
derived pairs that the transform accounts for. The word set of each transform
gives pairs of morphologically related words, but unlike in supervised models the
algorithm discovers these pairs from unstructured input rather than receiving them
as training data.

2.2 An Algorithm for Discovering Transforms

We now present an unsupervised algorithm to discover the suffixal morphol-
ogy underlying the words of a corpus. It takes an unstructured corpus as input



and returns a representation of the morphological grammar of the input corpus as
represented by the Base and Transforms Model.

The algorithm is an iterative, greedy procedure. In each iteration, it selects
the transform that models as many word types as possible and meets constraints
for the selection of a transform. All word types in the corpus are placed in the
Unmodeled set at the start of the algorithm’s execution. As the algorithm acquires
transforms, it moves words to the Base or Derived word sets based on the function
they serve in the learned transforms. The algorithm primarily uses the number of
types that suffixes and transforms represent; token frequencies of words are only
used to break ties.

The operation of the algorithm requires several numerical parameters, includ-
ing the maximum length of a suffix, the minimum size of a word after a suffix is
removed, and thresholds for the minimum number of word types a transform can
represent. Values for these parameters in the experiments reported below were set
by hand using a development corpus.

An overview of the algorithm is given in Figure 1. Each word in the corpus
belongs to one of three word sets at any point in execution: Base, Derived, or
Unmodeled. All words begin in the Unmodeled set and are moved into Base
or Derived as transforms are learned. The Base set contains the words that are
used as bases of learned transforms, and the Derived set contains words that are
derived forms of learned transforms. When proposing transforms, the algorithm
creates word pairs whose bases are in the Base or Unmodeled sets and whose
derived forms are in Unmodeled. This results in a bootstrapping mechanism that
encourages the reuse of existing bases for new transforms.

A key feature of the algorithm is how it exploits Zipfian distributions of mor-
phology, which allow the directionality of base-derived relationships to be inferred
using only the frequencies of the forms in the word set of each transform. Cross-
linguistic evidence for Zipfian distributions of morphology and evidence demon-
strating the algorithm’s correct identification of base forms are given in (Chan,
2008, chapters 4, 5).

We now present the learning loop of the algorithm in detail.

Count Suffixes. Iterate over the words in two sets, the Base ∪ Unmodeled set
and the Unmodeled set, and count all of the suffixes of length 0-5 contained in
each word, maintaining a separate count for the suffixes in each set. For exam-
ple, the word hopelessness (transcribed as HH.OW.P.L.AH.S.N.AH.S), contains the
suffixes (-$, -S, -AH.S, -N.AH.S, -S.N.AH.S, -AH.S.N.AH.S), and if it is only in the
Base set those affixes would be counted toward the Base ∪ Unmodeled set’s affix
counts, not the Unmodeled set’s. A suffix is only counted if removing it leaves a
sufficiently long stem, in this case three phonemes. This length limitation exists
to prevent the modeling of extremely short words that are likely closed-class or
morphologically irregular words. Affixes are ranked by the number of types they
appear in.



Hypothesize Transforms. Hypothesize transforms from all combinations of the
top 50 affixes as s1 and s2. For example, from the common English suffixes -$,
-Z, and -IH.NG the transforms ($, Z), (Z, $), ($, IH.NG), (IH.NG, $), (IH.NG, Z),
(Z, IH.NG) are hypothesized. For each hypothesized transform, iterate over every
word in the Base ∪ Unmodeled set containing s1 and check if the word that is the
result of applying the transform to that word is in the Unmodeled set. If it is, add
that base-derived pair to the word set of this transform. Transforms are ranked by
the number of word pairs they account for, without regard to the frequency of the
words in those pairs.

Select a Transform. The highest ranked transform is selected, provided it meets
the criteria for an acceptable transform. A transform should be rejected if it ap-
pears to be modeling a relationship between two forms that should both be derived
forms rather than a relationship between a base and a derived form. This relation-
ship can be indicated by an overlap ratio. A transform’s overlap ratio is calculated
as the ratio of its stem overlap to base overlap. The base overlap is the number of
base forms in the proposed transform that are base forms in the current grammar.
The stem overlap is the number of base forms’ stems (computed as the first four
phonemes) in the proposed transform that are also stems of words in the Base set.
The stem overlap is an approximation of the lexical similarity between two sets of
words.

An acceptable transform must have a sufficiently low overlap ratio. A high
overlap ratio implies that the bases in the transform’s word set are very similar to
words in the Base set, but not members of it. The likely cause is that the bases used
in the transform are derived forms of words in the Base set, and thus accepting the
transform would cause the Base set to include multiple inflections of the same
lexical category. This is undesirable as it results in inconsistent base forms.

If the first and second ranked transforms account for the same number of
types and are symmetric pairs, such as the English transforms ($, Z) and (Z, $),
a tie-breaking procedure is invoked that selects the transforms whose bases are
more frequent. This procedure is given in more detail in (Chan, 2008, chapter 5).

Stopping conditions. If there are no possible transforms remaining that account
for five or more base/derived pairs, learning stops, as selection of any remaining
transforms would only result in over-fitting the input corpus.

3 Results

To evaluate the algorithm’s effectiveness as a model of language acquisition,
we tested the algorithm on CHILDES corpora of English child-directed speech
transcriptions (MacWhinney, 2000). Six children’s corpora were used: Adam,
Eve, Naomi, Nina, Peter, and Sarah. The corpora were pre-processed, remov-
ing any annotations and child utterances. Pronunciation data for all words in the



Corpus Types Tokens Transforms
Learned

Combined 7,174 730,328 23
Sarah 4,407 182,030 14
Adam 3,437 117,022 14
Nina 3,123 184,042 13
Peter 2,829 136,714 13
Naomi 2,511 52,760 9
Eve 1,935 57,760 9

Table 1: Type and token counts for CHILDES corpora used

corpus were obtained from CMUDICT 0.6, (Weide, 1998) the Carnegie Mellon
University Pronouncing Dictionary. If multiple pronunciations were found for a
word, the first pronunciation was selected. Words for which no pronunciation
could be found were removed from the corpus. The token and type counts of the
CHILDES corpora used are given in Table 1. As shown in Table 1, the number
of transforms learned in a corpus is directly proportional to the number of types
present in the corpus. We present the algorithm’s output when run on a corpus
that combines all children’s data and when run on the corpus for each child.

3.1 Results on the combined corpus

The transforms learned when run on the combined corpus are given in Table 2
with example word pairs (in orthography), annotations for the most common mor-
phological function, and type and token statistics for each transform. Each trans-
form is given using ARPABET transcriptions.

The majority of the transforms correspond to common morphological rules
in English, as shown by the annotations in the “Morpheme” column. Because the
algorithm operates at a phonemic level, allomorphs for each morpheme such as
Z/S/AH.Z for the noun plural are learned in multiple transforms. Also, in cases
where multiple morphemes have the same phonemic representation, such as the
plural and third person singular, a single transform may represent multiple mor-
phemes. The most common regular verb inflections (plural, present progressive,
past tense) are represented by seven of the first nine transforms learned.

In general, initially acquired transforms are more likely to represent lin-
guistically reasonable morphological rules. Low type-frequency transforms are
more likely to be spurious. For example, the transform ($, K) is marked “spu-
rious” because none of its base-derived pairs (stay/steak, core/cork, stung/stunk,
ming/mink, poor/pork) contain morphologically related words.

Some transforms connect morphologically-related words, but do so by form-
ing relationships between two forms that would ideally each be modeled as de-
rived words. The transform (T.IY, TH)’s base-derived pairs (forty/fourth, fifty/fifth,



Iter. Transform Tokens Types Example Morpheme
1 ($, Z) 116591 518 trouble/troubles Noun pl., Poss., 3P Sg.
2 ($, IH.NG) 75830 284 land/landing Present progressive
3 ($, S) 105930 195 ant/ants Noun pl., Poss., 3P Sg.
4 ($, IY) 21588 100 noise/noisy Adj. derivation, Dimin.
5 ($, D) 24151 95 open/opened Past tense
6 ($, T) 25720 89 step/stepped Past tense
7 ($, ER) 45854 76 sing/singer Agentive, Comparative
8 ($, AH.Z) 11501 58 fix/fixes Noun pl., Poss., 3P Sg.
9 ($, AH.D) 34326 29 lift/lifted Past tense
10 ($, L.IY) 2836 20 bad/badly Adverb derivation
11 ($, AH.N) 6091 19 hid/hidden Past participle
12 ($, N) 1161 14 tore/torn Past participle
13 ($, AH.L) 44171 13 what/what’ll Contraction of “will”
14 ($, AH) 3485 12 floor/flora Spurious
15 (AH.N, $) 4325 8 garden/guard Spurious
16 ($, AH.S) 1116 7 fame/famous Adj. derivation
17 ($, AH.N.T) 18750 7 could/couldn’t Contraction of “not”
18 ($, AH.T) 202 6 wall/wallet Spurious
19 (AH.L, L.IY) 250 6 passable/passably Adverb derivation
20 ($, K) 8618 5 stay/steak Spurious
21 (IY, $) 1474 5 daddy/dad Adj. derivation, Dimin.
22 (AH.L, $) 2741 5 wiggle/wig Spurious
23 (T.IY, TH) 95 5 ninety/ninth Ordinal derivation

Table 2: Rules learned on English CHILDES data combined from six children

sixty/sixth, seventy/seventh, ninety/ninth) connect morphologically related words
but connect two forms that should each be derived from a common base. It
would be more desirable to have transforms ($, T.IY) to represent nine/ninety
and ($, TH) for nine/ninth. A similar phenomenon occurs for the derivational
rule (AH.L, L.IY), where we would prefer two derivational rules: ($, AH.B.AH.L)
(pass/passable), and ($, AH.B.L.IY) (pass/passably). We attribute the absence of
these preferred rules to composition of the vocabulary of the small corpus.

The algorithm can also learn transforms that represent a base-derived rela-
tionship in a direction opposite than expected. The transform (IY, $) is learned
after the more desirable ($, IY) because its base words (lady, monkey, daddy, lucky,
puppy, Jenny) have been placed in the Base set by other transforms (lady/ladies,
Jenny/Jenny’s) and thus cannot be derived by (IY, $). This problem can be avoided
by allowing words to move between the Base and Derived sets as the algorithm
learns, a technique discussed in detail in (Lignos et al., 2009).



Transform Adam Eve Naomi Nina Peter Sarah Mean σ

($, Z) 1 1 1 1 1 1 1 0.00
($, IH.NG) 2 2 2 2 2 2 2 0.00
($, S) 3 3 3 3 3 3 3 0.00
($, T) 4 5 4 4 4 5 4.33 0.47
($, IY) 6 4 5 7 6 6 5.67 0.94
($, D) 7 8 6 5 5 4 5.83 1.34
($, ER) 5 6 7 8 7 7 6.67 0.94
($, AH.Z) 8 7 8 NL 8 8 7.8 0.40
($, AH.D) 9 NL 9 10 9 10 9.4 0.49
(AH.N, $) NL NL NL 9 10 NL 9.5 N/A
($, AH.L) 12 9 NL NL 11 9 10.25 1.30
($, N) 10 NL NL 11 NL NL 10.5 N/A
($, AH.N) 11 NL NL NL NL 11 11 N/A
($, L.IY) 14 NL NL 12 NL 12 12.67 0.94
(AH.L, $) NL NL NL 13 NL NL 13 N/A
($, AH.N.T) 13 NL NL NL NL 13 13 N/A
($, K) NL NL NL NL NL 14 14 N/A

Table 3: Order of rules on individual children’s data sets in CHILDES

3.2 Results on individual children’s corpora

Table 3 shows the transforms learned when the algorithm was tested on cor-
pora for individual children. A transform is listed if it was learned from any of
the six children’s corpora. The order in which the transform was acquired is given
for each corpus with a mean and standard deviation for the transform across all
corpora. If a rule was not learned from a particular corpus, it is marked “NL.” If
a rule was not learned from at least half the corpora, its standard deviation is not
given.

Whether a particular transform is learned from a particular corpus depends
primarily on the number of word pairs that the transform can be applied to, which
is largely determined by the number of word types in the corpus but is also affected
by the bootstrapping effects of previous rules. Because of varying sizes of the
children’s corpora, the number of transforms learned before stopping varied from
9 to 14 rules, with the number of types in the corpus predicting the number of
transforms learned.

Because of the small size of these corpora, not all transforms are learned
across all corpora. In an acquisition scenario, it is likely there is a threshold below
which morphological patterns are indistinguishable from noise in the data. Thus
in the early stages of acquisition, when the learner has only been exposed to a
relatively small amount of data, only a few rules can be learned. As more words
are observed, rarer morphological patterns can rise above the noise and be learned,
as shown in the larger number of rules learned in the combined corpus.



Morpheme Brown Average
Rank

Corresponding
Transforms

Mean Transform
Rank

Present progressive 2.33 ($, IH.NG) 2.00
Plural 3.00 ($, Z/S/AH.Z) 3.93
Possessive 6.33 ($, Z/S/AH.Z) 3.93
Past regular 9.00 ($, D/T/AH.D 6.52
Third person regular 9.66 ($, Z/S/AH.Z) 3.93
Contractible copula 12.66 ($, Z/S) 2.0
Contractible auxiliary 14.00 ($, D/AH.L) 8.04

Table 4: Brown (1973) English morpheme acquisition order and corresponding
transforms

In addition to learning morphological rules in an iterative manner, an accurate
model of morphological acquisition would learn rules in an order similar to that
of children. We compare our results to those of Brown (1973), who manually ana-
lyzed child-directed speech transcripts for Adam, Eve, and Sarah. In Table 4, we
present the English acquisition sequence for regular, suffixal morphemes, as ana-
lyzed in Brown (1973). For each morpheme, we list the corresponding transforms
that the algorithm learns. Because of allomorphy in many English morphemes,
multiple transforms are needed to represent a single morpheme, such as the past
tense, and in some cases each transform also can represent the phonemic real-
ization of multiple morphemes, such as the transform ($, Z). For each transform,
we give a ranking corresponding to the order in which the transform was learned
across the six children’s corpora. When a morpheme corresponds to a single trans-
form, the mean rank of the transform as given in Table 3 is used. When multiple
transforms map to a particular morpheme, the mean of their mean ranks is given.

Although it is difficult to perform a direct comparison, it can be seen by that
using the mean ranks of transforms, the sequential order of acquisition of Present
progressive, Plural, Possessive, and Past Regular is correctly predicted by the al-
gorithm. The main inconsistency between the algorithm’s and children’s orders
of acquisition is in the Third person regular and Contractible copula. These are
acquired in two separate morphological rules by children, each of which has mul-
tiple surface phonological forms. The algorithm, however, acquires them in three
separate phonological transforms, one for each allomorph.

The transforms for /Z/, /S/, and /AH.Z/ are learned relatively early by the algo-
rithm (mean rank 3.93), whereas children acquire their corresponding inflections
(Plural, Possessive, Past regular, and Contractible Copula) somewhat later. There
is a principled reason for this discrepancy. In addition to identifying surface forms
of morphemes, children are also acquiring the syntactic uses of morphemes and
determining allophones. It is known in the acquisition literature (Slobin, 1973,
1986) that acquisition of homophonous morphemes is delayed since a child must
sort out the different syntactic functions of morphemes, whereas acquisition of un-
ambiguous morphemes is faster. The English allophone Z/S/AH.Z is three-ways



ambiguous with respect to underlying function, which is why it is not acquired
earlier as predicted by the algorithm. Since the algorithm only looks at the fre-
quencies of surface phonological forms, we should not expect the order of mor-
pheme acquisition to be the same as children for ambiguous morphemes.

Unlike children, the algorithm has no competency-performance gap and does
not take the difficulties associated with identifying syntactic context into account.
We would thus expect variation the algorithm’s learning order and the competency
demonstrated by children even if both were using the same method for rule selec-
tion. Reevaluating the algorithm with extensions to identify and merge allomorphs
and generalize the applicability of rules would help provide a better estimation of
the difficulty of learning individual rules, but it would not address the lack of a
competency-performance gap that all discrete-representation computational mod-
els face.

4 Discussion

The algorithm’s success in learning the most common rules and the correla-
tion between its learning order and the acquisition order of children suggest that
type-frequency is a good indicator of rule quality and the primary indicator of how
quickly children acquire rules. This supports the accepted notion that frequencies
in the input are important to learners but extends it by demonstrating that the fre-
quency of hypotheses that explain the input, not just the frequency of symbols in
the input, can effectively be used to guide learning, as suggested in (Chan, 2008;
Yang, 2002). For a child learner to operate in this way, she must not only have
an innate concept of rules, but also an innate metric or set of constraints to select
these rules. The invariance across children suggests that these metrics may be
built into the learner.

The alignment between the algorithm’s and children’s learning orders sug-
gests the child learner adopts hypotheses that explain the greatest number of types
in the input, progressively hypothesizing new rules to cover unmodeled data after
each rule. Experiments have shown that children are capable of performing type-
based computations (Gerken, 2006; Gerken and Bollt, 2008), although laboratory
experiments cannot answer how such information can be used in the acquisition
of an entire language.

The quality of the rules learned on such small corpora suggests that a sim-
ple, greedy approach may be all that is needed to learn the regular rules of the
language. The process of hypothesizing and selecting the morphological rules of
a language may be a more computationally simple process than statistical mod-
els would imply. The presented algorithm does not require tracking and rees-
timating a large number of parameters or probability estimates as transitional-
probability based models do, instead it simply performs type-based counting. Un-
like Bayesian or other statistical optimization approaches, the algorithm does not
require large numbers of iterations over the data to converge on parameters; it



incrementally acquires hypotheses that are interpretable at every step of learning.
While the algorithm uses statistical patterns of the input to select rules, the

rules themselves are discretely represented and discretely applied. A rule applies
to a particular set of words, but within that set it always applies. This stands
in contrast to approaches which may learn a discrete set of rules but apply them
probabilistically.

5 Conclusions

The algorithm and model presented demonstrate that a simple, intuitive al-
gorithm can succeed at an acquisition task by taking advantage of the statistical
characteristics of the expected input and using the frequency of hypotheses, not
only input data, to select which hypotheses to adopt. This concept can be extended
to a higher level than the simple affixal transform evaluated in this work; to learn
many of the desired rules of language, more abstract rules are required. A more
evolved learner would build on this by taking the rules learned from seen data and
estimating their productivity such that they can be appropriately generalized to
new data, as suggested in (Yang, 2005).
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