NPIs in Questions, Disjunction and Ellipsis

Elena Guerzoni, USC
\&
Yael Sharvit, UCLA

Weak-NPIs in Questions

NPIs like any and ever are grammatical in most questions:
(1)a. Did Mary ever read Syntactic Structures?
b. Which students have ever read Syntactic Structures?
(2)a. John wonders whether Mary ever read $S S$.
b. John wonders which students have ever read $S S$.

Weak-NPIs in Questions

...but not all questions. E.g. not in Alternative Qs.
(3) a. Did Jon play chess or checkers?

Alternative Y-N
b. Did anyone play chess or checkers? *Alternative \checkmark Y-N
c. Jon wonders whether anyone played chess or checkers
*Alternative $/ \checkmark$ Y-N
(Higginbotham 1993)

Alternative/Y-N ambiguity

(3) a. Did Jon play chess or checkers?

Alternative Interpretation
Presupposition: Jon played at least one of the two games.
$\begin{array}{ll}\text { Expected Answers: } & \begin{array}{l}\text { Jon played chess. } \\ \text { Jon played checkers }\end{array}\end{array}$
Y-N Interpretation
No Presuppositions
Expected answers: Yes, he played chess or checkers.
No he didn't play either.

Alternative Intonation

* Did anyone play CHESS or CHECkers?

Y-N Intonation

Did anyone play chess or CHECkers?

Did anyone play chess or CHECkers?
 Expected Answers: Yes someone did.
 No, nobody did.

Weak-NPIs in Questions

...but not all questions
E.g. Questions under surprise (Guerzoni\&Sharvit2007)
(4)a. *It surprised Jon which students ever read $S S$.
b. Jon wondered which students ever read $S S$.

Weak-NPIs in Questions

Y/N	Alternative	Root-wh	Wonder-wh	Surprise-wh
\checkmark	$*$	\checkmark	\checkmark	$*$

What Licenses NPIs in Questions

The Question Operator "?"/ the non veridical semantics of Questions?
...but NPIs are not acceptable in all questions
Whether/ Wh-phrases?
... but NPIs are not acceptable in all whether or wh Q
Some Question Embedding Predicates but not Others?
....but NPIs are not acceptable in alternative questions even in the complement of wonder.

NPIs and (the scope of) Negation

(5) a. * Mary ordered any Brussels sprouts
b. Mary didn't order any Brussels sprouts
c. *Any Brussels sprouts didn' t fall off her plate.

What if NPIs were licensed in the scope of negation also in

 questions?If feasible, this theory would satisfy all the contenders: every theory of NPIs must be compatible with negations being licensers

Content of This Talk

Part I

A unified syntax/semantic analysis of Y-N and alternative interrogatives (in the spirit of Larson 1985)
$=>$ The resulting analysis provides a straightforward explanation for the \mathbf{Y}-N/alternative contrast in the acceptability of NPIs

Content of This Talk

Part II

A natural extension of the analysis in Part I to wh-questions:
$=>$ The resulting analysis provides a straightforward explanation for the wonder/surprise contrast.

Weak-NPIs in Questions

Y / N	Alternative	Root-wh	Wonder-wh	Surprise-wh
\checkmark	$*$	\checkmark	\checkmark	$*$

New(ish) View on Questions

Questions are traditionally analyzed as sets of alternative answers.

We see disjunction as one of the basic ways to provide alternative propositions, in y / n, alternative and even some $w h$-questions.

New(ish) View on Questions

We suggest an ellipsis-based fully unified syntactic and semantic analysis of:
(i) Alternative questions
(ii) Y / N-questions,
(iii) and the nucleus of
A. root WH-questions
B. wonder-wh questions

Syntax

Alternative Questions

Underlying:

Whether $_{7}$
?
John played chess

$$
\text { or }_{7} \quad \text { John played checkers }
$$

(C.f. Han and Romero 2004)

Syntax

Alternative Questions

With Ellipsis

Syntax

Y/N Questions: whether p

Did John play chess? /Whether John played chess

Syntax

Y/N Questions: whether p

Underlying:

(see Larson 1985)

Syntax

Y/N Questions: whether p

With Ellipsis: Option 1

Without omission of or not: Whether or not p
(6) Whether or not John played chess

Syntax

Y/N Questions: whether p

With Ellipsis: Option 1

Without omission of or not: Whether or not p
(6) Whether or not John played chess

Syntax

Y/N Questions: whether p

With Ellipsis: Option 2

or $_{7}$ not Johm playedehess

Without omission of or not: Whether p or not
(7) Whether John played chess or not.

Syntax

Y/N Questions: whether p

With Ellipsis: Option 2

Whether $_{7}$?
John played chess
(or_{7} not) Johm playedehess

Without omission of or not: Whether p or not
(7) Whether John played chess or not.

Syntax

Y/N readings of whether p or q

Q: Did John play chess or checkers?
= Is it true that he did at least play one of the two games?
A: Yes, but I don't remember which.

Syntax

Y/N readings of whether p or q

Before Ellipsis:

Syntax

Y/N readings of whether p or q

With Ellipsis: Option1

Syntax

Y/N readings of whether p or q

With Ellipsis: Option 2

Syntax

Root Wh-questions:

Syntax

Root Wh-questions:

Option 1:

Syntax

Root Wh-questions:

Option 2:

Evidence from Bulgarian: matrix and embedded Y-N questions obligatorily contain the 'question clitic' li (or its non clitic variant dali); li can, but doesn't have to co-occur with wh-words.
(1)a. Iska *(li) kafe?
want-3sg li coffee
'Does he/she want coffee?'
b. Čudja se/ne znam iska *(li) kafe
wonder-1sg refl/not know-1sg want-3sg li coffee
'I wonder/ I don't know whether he/she wants coffee'
(2)a. S kogo li se e sres^tnal vc^era?

With whom li refl is met-participle yesterday?
'Who did you meet yesterday?'
b. S koi li studenti se e sres $^{\wedge}$ tnal vc^{\wedge} era?

With which $l i$ student refl is met-participle yesterday?
'Which student did you meet yesterday?'
c. C^{\wedge} udja se kakvo li iska
wonder-1sg refl what li want-3sg
'I wonder what he wants' Guerzoni (2003)

Alternative Questions
Whether $C P_{1}$ or $C P_{2}$
Y/N Questions
Whether $C P_{1}$ or not $C P_{1}$

Root Wh-questions
Wh-XP ${ }_{1}$ Whether $\left[C P 1 \ldots t_{1} ..\right]$ or not $\left[\begin{array}{c|c|} & \left.\ldots t_{1} \ldots .\right]\end{array}\right.$

Syntax

Consequensces

The syntax of Y / N Questions \& root Whquestions contains sentential negation, and may therefore license NPIs in its scope, the syntax of Alternative Questions does not contain negation and cannot license NPIs.

Weak-NPIs in Questions

Y/N	Alternative	Root-wh	Wonder-wh	Surprise-wh
\checkmark	$*$	\checkmark	\checkmark	$*$

Semantics

Basic Assumptions

- Partee and Rooth (1982)'s Heimian-indefnite semantics of or.
- Heim\&Kratzer (1998)'s stepwise procedure for binding and quantification of the indefinite

Semantics

Indefinite or

(8) $\left[\left[\text { or }_{i}\right]\right]^{\mathrm{g}}=$
$\lambda \mathrm{P}_{<\sigma, \downarrow>} \cdot \lambda \mathrm{Q}_{<\sigma, t>} \cdot \lambda \mathrm{x}_{\sigma} .[\mathrm{g}(\mathrm{i})=\mathrm{P} \vee \mathrm{g}(\mathrm{i})=\mathrm{Q}] \wedge \mathrm{g}(\mathrm{i})(\mathrm{x})=1$
(9) $\left[\left[\right.\right.$ or $\left.\left._{i}\right]\right] g\left(P_{<\sigma, \downarrow}\right)\left(Q_{<\sigma, t\rangle}\right)=$ an open predicate of type $<\sigma, \mathrm{t}>$, containing a variable restricted by the set $\{\mathrm{P}, \mathrm{Q}\}$

Semantics

Existential Closure of "or"
(10) (Mary is) swimming or dancing.

Semantics

Existential Closure of "or"
(10) (Mary is) swimming or dancing.

Semantics

Existential Closure of "or"
(10) (Mary is) swimming or dancing.

Semantics

Existential Closure of "or"
(10) (Mary is) swimming or dancing.

$[[\exists]]=\lambda \mathrm{S}_{<\mathrm{et}, \mathrm{et}>} \cdot \lambda \mathrm{x}_{\mathrm{e}} \cdot \exists \mathrm{R}_{<\mathrm{e}, \mathrm{t}>}$ s.t. $\mathrm{S}(\mathrm{R})(\mathrm{x})=1$

Semantics

Whether A or $B=$ Which of either A or B

"Historically, whether developed as the wh-counterpart of either, with the original meaning of which of either A or B [...]
(Larson 1985, p.225)

Whether is greater, the gold or the temple? (Jaspersen 1909-49, II p.200)

Semantics

Whether

Our semantics of whether is that of whdeterminers (like which, what).
$[[\text { whether }]]^{\mathrm{w}}=\lambda \mathrm{Q}_{<\mathrm{st}, \mathrm{str}>} \cdot\left\{\mathrm{q}_{\mathrm{st}}: \exists \mathrm{r}_{\mathrm{st}}[\mathrm{q} \in \mathrm{Q}(\mathrm{r}) \wedge \mathrm{q}(\mathrm{w})=1]\right\}$
"Which proposition?"
(compare with:
$[[$ which $\left.]] \mathrm{w}=\lambda \mathrm{Q}_{<\mathrm{e}, \mathrm{stt}} .\left\{\mathrm{q}_{\mathrm{st}}: \exists \mathrm{x}_{\mathrm{e}}[\mathrm{q} \in \mathrm{Q}(\mathrm{x}) \wedge \mathrm{q}(\mathrm{w})=1]\right\}\right\}$
"Which individual...."

The restrictor whether is the predicate of
(set of) propositions combined by disjunction.

Semantics

Whether p or q

Whether Jon played chess or Jon played checkers

Semantics

"or" as a restricted variable

Jon played chess or Jon played checkers
Abbreviations: $\quad \mathbf{C H}=\lambda \mathrm{w}$. Jon played chess in w
$\mathbf{C H K}=\lambda w$. Jon played checkers in w

```
\lambdaw.[g(7)=CH \veeg(7)=CHK]^g(7)(w)=1
```

Jon played chess or ${ }_{7}$ Jon played checkers

Semantics

Adding the question morpheme? and binding "or"
[7 ? Jon played chess or ${ }_{7}$ John played checkers]

$$
\lambda \mathrm{p}_{\mathrm{st}} \cdot\{\lambda \mathrm{w} .[\mathrm{p}=\mathbf{C H} \vee \mathrm{p}=\mathbf{C H K}] \wedge \mathrm{p}(\mathrm{w})=1\}
$$

Jon played chess or ${ }_{7}$ Jon played checkers
(c.f. Kartunen 1977 for the meaning of ?)

Semantics

$$
[[\text { whether }]]^{\mathrm{w}}=\lambda \mathrm{Q}_{<\mathrm{st}, \mathrm{stt}>} \cdot\left\{\mathrm{q}_{\mathrm{st}}: \exists \mathrm{r}_{\mathrm{st}}[\mathrm{q} \in \mathrm{Q}(\mathrm{r}) \wedge \mathrm{q}(\mathrm{w})=1]\right\}
$$

whether

Semantics

$$
[[\text { whether }]]^{\mathrm{w}}=\lambda \mathrm{Q}_{<\mathrm{st}, \mathrm{stt}>} \cdot\left\{\mathrm{q}_{\mathrm{st}}: \exists \mathrm{r}_{\mathrm{st}}[\mathrm{q} \in \mathrm{Q}(\mathrm{r}) \wedge \mathrm{q}(\mathrm{w})=1]\right\}
$$

$$
\left.\left\{\mathrm{q}_{\mathrm{st}}:(\mathrm{q}=\mathbf{C H} \vee \mathrm{q}=\mathbf{C H K}) \wedge \mathrm{q}(\mathrm{w})=1\right]\right\}
$$

whether

Semantics

Y/N Questions

Recall that....

Whether p or not: Whether Jon played chess or not Whether or not p: Whether or not Jon played chess Whether p : Whether Jon played chess

Have the Same Structure Before Ellipsis:
Whether p or not p :
(11) Whether 7 ? Jon played chess or $_{7}$ not Jon played chess

Semantics

"or" as a restricted variable
Jon played chess or not Jon played chess

$$
\lambda \mathrm{w} \cdot[\mathrm{~g}(7)=\mathbf{C H} \vee \mathrm{g}(7)=\operatorname{not} \mathbf{C H} \wedge \mathrm{g}(7)(\mathrm{w})]=1
$$

Jon played chess or ${ }_{7}$ not Jon played chess

Abbreviations: $\mathbf{C H}=\lambda \mathrm{w}$. Jon played chess in w not $\mathbf{C H}=\lambda w$. Jon didn't played checkers in w

Semantics

$$
[[\text { whether }]]^{\mathrm{w}}=\lambda \mathrm{Q}_{\langle\mathrm{st}, \mathrm{ss} \downarrow \cdot} \cdot\left\{\mathrm{q}_{\mathrm{st}}: \exists \mathrm{r}_{\mathrm{st}}[\mathrm{q} \in \mathrm{Q}(\mathrm{r}) \wedge \mathrm{q}(\mathrm{w})=1]\right\}
$$

$\left.\left\{\mathrm{q}_{\mathrm{st}}:[\mathrm{q}=\mathbf{C H} \vee \mathrm{q}=\boldsymbol{n o t} \mathbf{C H}] \wedge \mathrm{q}(\mathrm{w})=1\right]\right\}$

whether
7

Jon played chess or ${ }_{7}$ not Jon played chess

Semantics

Wh-questions

Who played chess?

Semantics

Wh-questions

Who played chess?

Semantics

Wh-questions

$$
\left.\left\{\mathrm{q}_{\mathrm{st}}:[\mathrm{q}=\text { that } \mathrm{g}(1) \text { pl. chess } \vee \mathrm{q}=\text { that } g(1) \text { didn't pl. chess }] \wedge \mathrm{q}(\mathrm{w})=1\right]\right\}
$$

Whether

t_{1} played chess or ${ }_{7}$ not t_{1} played chess

Semantics

Wh-questions

$$
\left.\left\{\mathrm{q}_{\mathrm{st}}: \exists \mathrm{x}[\mathrm{q}=\text { that } x \text { pl. chess } \mathrm{vq}=\text { that } x \text { didn't pl. chess }] \wedge \mathrm{q}(\mathrm{w})=1\right]\right\}
$$

Semantics

Preliminary evidence from Italian:

Y/N
Mario si domanda se Giovanni sia (o no) venuto (/o no).
Mario wonders if John is-Subj (or not) come (/or not)
'Mario wonders whether (or not) John came (/or not)'
wh-
M. si domanda chi sia (o no) venuto (/o no).
M. wonders who is-Subj (or not) came (/or not)
'Mario wonders who came'

Refined Predictions

1. Scope

In Y/N, which do contain negation, NPIs are acceptable only if their overt occurence is in the scope of that negation.
(12) a. *R Mary wondered whether Jon has ever read Syntactic Structures or not Jon has ever read SS.
b. Mary wondered whether Jon has ever read Syntactic Structures or not Jon has ever read SS.

Refined Predictions

This correlates with Kayne's observation that ellipsis of any in declarative clauses is acceptable only when the overt any is in the negated clause.
(13) a. *Mary didn't buy any books about linguistics but John did buy any books about linguistics.
b. Mary bought any books about linguistics but John didn't buy any books about linguistics.

$$
\text { (Kayne } 1994 \text { n. 19, p. 146) }
$$

58

Refined Predictions

Corollary: Whether p

NPIs are acceptable in whether p questions, because these questions do admit an analysis in which they are in the scope of negation:
(14) (Whether) Jon has ever read read Syntactic Structures?

* whether ${ }_{1}$?[J. has ever read $\left.S S\right]\left(\mathbf{o r}_{1}[\right.$ not $)$ J. has ever read $\left.S S\right]$
\checkmark whether1?[J. has ever read $S S]\left(\mathbf{o r}_{1}[\right.$ not $)$ J. has ever read $S S$]

Weak-NPIs in Questions

Y/N	Alternati ve	Root-wh	Wonder-wh	Surprise-wh
\checkmark	$*$	\checkmark	\checkmark	$*$

Weak-NPIs in Questions

Y/N		Alternative	WH		
Whether or not p Whether p	Whether p or not		root	Wonder	Surprise
\checkmark	*	*	\checkmark	\checkmark	*
					61

Refined Predictions

3. Wonder vs. Surprise:

Predicates like surprise do not admit whether (or not) complements,
(14) a. *It surprised Susan whether (or not) Mary called.

Wonder-predicates do admit whether or not complements
(15) a. Susan wondered whether (or not) Mary called
(Guerzoni 2003, Guerzoni and Sharvit 2007)

Refined Predictions

\Rightarrow wh-complements of surprise may not contain a y / n question
(16) It surprised Susan [which students $]_{1}\left[?\left[\mathrm{t}_{1}\right.\right.$ read SS$\left.]\right]$
\Rightarrow wh-complements of Wonder predicates may:
(17)Susan wonders/knows [which students] ${ }_{1}$ [whether $\left[t_{1}\right.$ ever read SS (or not) t_{1} read SS]]

This relates to the difference between Weak and Strong Exhaustivity (see Heim 1994, Guerzoni 2003, and Guerzoni and Sharvit 2007)

Refined Predictions

Wh-complements of surprise contain no negation and disallow NPIs:
(18) *It surprised Susan which students ever read SS. surprise[which students $]_{1}\left[?\left[\mathrm{t}_{1}\right.\right.$ ever read SS$\left.]\right]$

Wh-complements of wonder predicates do admit admit NPIs:
(15) a. Susan wondered whether Mary called
b. Susan wondered/knows which students ever read SS. wonder $[\text { which students }]_{1}\left[\right.$ whether $\left[t_{1}\right.$ ever read SS (or not) t_{1} ever read SS]]

Weak-NPIs in Questions

Y/N		Alternative	WH		
Whether or not p Whether p	Whether p or not		root	Wonder	Surprise
\checkmark	*	*	\checkmark	\checkmark	*

Conclusions:

A unified syntax/semantics of:

- y / n questions
- alternative questions
- nuclei of root and SE wh-questions

In terms of whether ${ }_{i} \ldots$ or $_{i}$

Provides a satisfactory account of the complex pattern of NPIs in Interrogative Sentences.

Selected References:

Beck, S. and H. Rullmann. 1999. A Flexible Approach to Exhaustivity in Questions, NALS 7:249-298.
Fauconnier, G. 1975. Polarity and the Scale Principle, CLS 11, 188-199.
Giannakidou, A. 1997. The Landscape of Polarity Items, PhD dissertation, Groningen.
Guerzoni, E. 2003. Why Even Ask? On the Pragmatics of Questions and the Semantics of Answers. Ph.D. dissertation, MIT.
Guerzoni, E. and Y. Sharvit. 2007. A Question of Strength: On NPIs in Interrogative Clauses, $L \& P$ 30:361-391.
Guerzoni, E. and Y. Sharvit. 2007. A Question of Strength: On NPIs in Interrogative Clauses, $L \& P$ 30:361-391.
Han, C.-H. and M. Romero. 2004. The Syntax of Whether/Q(16)r Questions: Ellipsis Combined with Movement, NLLT 22: 527-564.
Heim, I. 1994. Interrogative Complements of Know, in IATL9, 128-144.

Higginbotham, James. 1993. 'Interrogatives', The View from Building 20. Hale, Ken and Morris Halle (eds). Cambridge, MA: MIT Press. 195-227. Karttunen, L. 1977. Syntax and Semantics of Questions, L\&P 1: 3-44.
Karttunen, L. 1977. Syntax and Semantics of Questions, $L \& P$ 1:344Kayne, R. 1994. The Antisymmetry of Syntax; LI Monographs: 25.
Ladusaw, W. 1979. Polarity Sensitivity as Inherent Scope Relation. Ph.D. dissertation, UT, Austin.
Larson, R. 1985. On the Syntax of Disjunction Scope, NLLT 3:217-264.
Partee, B. And M. Rooth. 1982. Conjunction, Type Ambiguity and Wide Scope. WCCF1. Progovac, L. 1993. Negative Polarity: Entailment and Binding, $L \& P$ 16:149-180.
Rullmann, H. \& S. Beck. Presupposition Projection and the Interpretation of which-Questions. SALT 8 Proceedings, Cornell Unversity, 215-232.
Sharvit, Y. 2002. Embedded Questions and 'De Dicto' Readings, Natural Language Semantics 10:97-123.

Appendix I: Beyond English:

(1) \checkmark Whether $C P$ with NPI
$\begin{array}{lll}\text { Dan si chiedeva se Mira fosse } & \text { mai stata } & \text { in Francia. } \\ \text { Dan wonder-past if Mira be-past-subj } & \text { ever be-participle in-France } \\ \text { 'Dan wondered whether Mira had ever been to France' } & \text { Italian } \\ \text { Dan taha im Mira ey-pa'am } & \text { hayta be-Carfat } & \\ \text { Dan wonder-past if Mira ever be-past in-France } & \\ \text { 'Dan wondered whether Mira was ever in France' } & \text { Hebrew }\end{array}$
(2) $\sqrt{ }$ Whether CP or not CP w/o NPI

Dan si chiedeva se Mira fosse stata in Francia $\mathbf{0}$ no
Dan wonder-past if Mira be-past-subj be-participle in-France or not
'Dan wondered whether Mira had been to France or not'
Italian
Dan taha im Mira hayta be-carfat o lo
Dan wonder-past if Mira be-past in-France or not
'Dan wondered whether Mira was in France or not'
Hebrew
(3) ${ }^{*}$ R Whether CP or not $C P$ with NPI
*R Dan si chiedeva se Mira fosse mai stata in Francia o no? Dan wonder-past if Mira be-past-subj ever be-prt in-France or or not

Italian
*RDan taha im Mira ey-pa'am hayta be-carfat o lo Dan wonder-past if Mira ever be-past in-France or not

Hebrew
No whether or not p in either language:
(4) * Whether or CP not CP w/o NPI
*Dan si chiedeva se o no Mira fosse stata in Francia
Dan wonder-past if or not Mira be-past-subj be-participle in-France
Italian
*Dan taha im o lo Mira hayta be-carfat Dan wonder-past if or not Mira be-past in-France 'Dan wondered whether or not Mira was in France'

Other structures with overt or not
Hebrew: whether yes CP or no CP
(5) Whether [yes CP or no CP]
?Dan taha im ken o lo Mira hayta be-carfat
Dan wonder-past if yes or not Mira be-past in-France
'Dan wondered whether or not Mira was in France'
(6) Whether [yes CP or no CP] with NPI
?Dan taha im ken olo Mira ey-pa'am hayta be-carfat
Dan wonder-past if yes or not Mira ever be-past in-France
'Dan wondered whether or not Mira was ever in France'
Italian: $V P$ or not $V P$
(7) \checkmark Whether XP Aux [VP or not VP] w/o NPI

Dan si chiedeva se Mira fosse o no stata in Francia.
Dan wonder-pst if Mira be-pst-sbj or not be-participle in-France
'Dan wondered whether Mira had or not been to France'.
(8) \checkmark Whether [XP Aux [mai VP or not mai VP] with NPI

Dan si chiedeva se Mira fosse o no mai stata in Francia. Dan wonder-pst if Mira be-pst-sbj or not ever be-prt. in-France
'Dan wondered whether Mira had or not ever been to France'.
(9) Whether [XP Aux [mai VP or not VP] with NPI

Dan si chiedeva se Mira fosse o no stata in Francia.
Dan wonder-pst if Mira be-pst-sbj or not ever be-prt. in-France 'Dan wondered whether Mira had or not ever been to France'.
(10)*Whether [XP Aux [mai VP or not mai VP] with NPI

Dan si chiedeva se Mira fosse mai o no stata in Francia.
Dan wonder-pst if Mira be-pst-sbj or not ever be-prt. in-France
'Dan wondered whether Mira had or not ever been to France'.
(11) * Whether [XP Aux [mai [VP or not VP] with NPI
*Dan si chiedeva se Mira fosse mai o no stata in Francia. Dan wonder-pst if Mira be-pst-sbj ever or not ever be-prt. in-France
'Dan wondered whether Mira had ever or not been to France'.

Appendix II: Calculation

Whether 7 ? John played chess or r_{7} checkers
Lexical Entries:

$[[?]]^{g, w}=\lambda q_{\text {st }}\{q\}$
(c.f. Karttunen 1977)

Calculation:
$\left[\left[\mathrm{or}_{7}\right]^{\mathrm{g}, \mathrm{w}}([\text { John played chess }]]_{\xi}\right)\left([[\text { John played checkers }]]_{\xi}\right)=$ $\lambda w^{\prime} .[g(7)=\mathbf{C H} \vee g(7)=\mathbf{C H K}] \wedge g(7)\left(w^{\prime}\right)=1$

This proposition is $\mathrm{g}(7)$ if $\mathrm{g}(7)$ is either that John played chess or that John played checkers, otherwise it is a contradiction.
$\left[[\text { ? John played chess or } \text { checkers }]_{\text {g.w }}{ }^{\text {w }}=\right.$
$\left\{\lambda w^{\prime} .[g(7)=\mathbf{C H} \vee \mathrm{g}(7)=\mathbf{C H K}] \wedge \mathrm{g}(7)\left(\mathrm{w}^{\prime}\right)=1\right\}$

$$
\begin{aligned}
& \text { [[} 1 \text { ? John played chess or }{ }_{7} \text { checkers]] }{ }^{\text {g.w }}= \\
& \lambda p_{s t} .\left\{\lambda w^{\prime} .[p=\mathbf{C H} \vee p=\mathbf{C H K}] \wedge p\left(w^{\prime}\right)=1\right\} \\
& \text { [[whether } \left.7 \text { ? [[John played chess] or }{ }_{7} \text { [John played checkers]]] }\right]^{\text {g,w }}=
\end{aligned}
$$

because of the condition $\exists \mathrm{r}_{\mathrm{st}} \mathrm{s}$.t. $\left.\mathrm{q}=\lambda \mathrm{w}^{\prime} \cdot[\mathrm{r}=\mathbf{C H} \vee \mathrm{r}=\mathbf{C H K}] \wedge \mathrm{r}\left(\mathrm{w}^{\prime}\right)=1\right]$ there are only 3 possible values for q : $\mathbf{C H}, \mathbf{C H K}$ or \perp,

$$
=\left\{\mathrm{q}_{\mathrm{st}}(\mathrm{q}=\mathbf{C H} \vee \mathrm{q}=\mathbf{C H K} \vee \mathrm{q}=\perp) \wedge \mathrm{q}(\mathrm{w})=1\right\}
$$

But given the condition $\mathrm{q}(\mathrm{w})=1, \mathrm{q}$ cannot be \perp,

$$
=\left\{\mathrm{q}_{\mathrm{st}}: \exists \mathrm{Ir}_{\mathrm{st}} \mathrm{~s} . \mathrm{t} .(\mathrm{q}=\mathbf{C H} \vee \mathrm{q}=\mathbf{C H K}) \wedge \mathrm{q}(\mathrm{w})=1\right\}
$$

