
Cyclic opacity facilitates phonological interpretation

Ewan Dunbar
Laboratoire de Sciences Cognitives et Psycholinguistique, ENS/EHESS/CNRS

April 4, 2014
GLOW 37, Brussels

1 Some quirky properties of human language

(1) Cyclic computation
(i) Inside-outness

Phonology:

[[[noun] [class]]N [[sci.ence] [news]]N]NP
[[[1] [1]]N [1 0] [1]]N]NP
[[[1] [2]]N [[1 0] [2]]N]NP
[[[2] [3]]N [[1 0] [3]]N]NP

but not

[[[noun] [class]]N [[sci.ence] [news]]N]NP
[[[1] [1]]N [[1 0] [1]]N]NP
[[[2] [2]]N [[1 0] [1]]N]NP
[[[2] [2]]N [[1 0] [3]]N]NP

Syntax:

T v V NP
[V NP]

[v+V [V NP]]
[T+v+V [v+V [V NP]]]

but not

T v V NP
[v]

[T+v [v]]
[V NP]

[T+v [v [V NP]]]

(ii) Cyclic opacity

Phonology:
[[tórna] u] [[[triómf] ál] ízm]
[[tórna] u] [[[triómf] ál] ízm]

Glide (after vowel) [[tórna] w] –
Destress (if not last str.) – [[[triomf] ál] ízm]
Reduction (unstressed) [[tórn@] w] [[[triumf] ál] ízm]

[[[triumf] ál] ízm]
GF note! ! –

Des. [[[triumf] al] ízm]
Red. [[[triumf] @l] ízm]

tórn@w triumf@lízm

not

[[[triómf] ál] ízm]
[[[triómf] ál] ízm]

–
[[[triomf] ál] ízm]
[[[triumf] ál] ízm]
[[[triumf] ál] ízm]
[[[triwmf] al] ízm]
[[[triwmf] al] ízm]
[[[triwmf] @l] ízm]

triwmf@lízm

Strict Cycle Condition in phonology (Kean 1974, Mascaró 1976): “No reaching back” (more later)

1

Syntax/morphology:
Strict Cycle Condition (Chomsky 1973), extension of the root (Chomsky 1995), i.e., matters of timing:
“don’t operate completely inside material you’ve already dealt with”; not locality effects like
Subjacency, although these are generally folded under one single condition in syntax (e.g., Conditions
on Transformations (59) [Strict Cycle] + (80) [Subjacency] = (81); Chomsky 1999 PIC)

(2) Computationally distinct modules
Phonology and syntax have very different properties, looked at from the point of view of what family of
functions they belong to

(i) Syntactic computations are mildly context sensitive
e.g,. Cross-serial dependencies in Swiss German (Shieber 1985)

Jan
Jan

säit
says

das
that

mer
we

em Hans
DATIVE Hans

es huus
ACCUS house

hälfed
helped

aastriiche
paint

“Jan says that we helped Hans paint the house”

Jan
Jan

säit
says

das
that

mer
we

de Hans
ACCUS Hans

es huus
ACCUS house

lönd
let

aastriiche
paint

“Jan says that we let Hans paint the house”

blah
blah

blah
blah

blah
blah

we
we

N
1

N
2

V
1

V
2

(ii) Phonological computations are always (sub) regular (“finite-state”)
(ii-a) static generalizations about surface forms (e.g., vowel harmony, like “don’t have front vowels
anywhere after back vowels and don’t have back vowels anywhere after front vowels”)

0

C 1BACK

2

FRONT

BACK C

FRONT C

(ii-b) underlying–surface mappings (e.g., “shorten vowels in closed syllables”—or, simplifying a bit,
“before two consonants”)

2

0

SHORT C
1LONG

2

<LONG:SHORT>

SHORT

LONG
<LONG:SHORT>

4C

3

C

C

SHORT

LONG
<LONG:SHORT>

(ii-c) any derivational combination of a finite number of these mappings (e.g., combine vowel
shortening with consonant deletion)

pi :tsa panta pi :nta
V!V̆/ — CC pitsa – pinta
n ! f / — t – pa<n>ta pi<n>ta

pitsa pata pita

pi :tsa panta pi :nta
n ! f / — t – pa<n>ta pi :<n>ta

V!V̆/ — CC pitsa – –
pitsa pata pi :ta

Finite-state tranducers are closed under finite composition:

1. Convert each rule to a transducer like the one in (ii-b)
2. Generate a single big finite state transducer that corresponds to feeding the output of R1 to R2 and
so on

You can always do this and still have a finite-state transducer. Pulling out the rules implicit in the
transducers corresponding to the two orders above, for example, we get:

(Both orders) n ! f / — t

(Left order) V!V̆/ —

8
>>>>>>>><

>>>>>>>>:

C
⌧

n
ø

�
t

⌧
n
ø

�
t

n any C but t or
⌧

n
ø

�

any C but n C

9
>>>>>>>>=

>>>>>>>>;

(Right order) V!V̆/ —

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

C
⌧

n
ø

�
t

⌧
n
ø

�
t
⌧

n
ø

�
t

⌧
n
ø

�
tC

n any C but t or
⌧

n
ø

�

any C but n C

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

3

(3) Limits to regular computations
Finite-state devices only have finite memory. So there isn’t any finite-state device that can do the tasks
of, e.g.,
Matching arbitrary pairs of brackets:

[. . . [. . . [. . .] . . .] . . .] , [. . . [. . . [. . . [. . .] . . .] . . .] . . .] , etc.,
vs. ⇤[. . . [. . . [. . .] . . .] . . . , ⇤[. . . [. . . [. . .] . . .] . . .] . . .]

Tracking arbitrary nested dependencies:
[The man [[the dog [the cat bit <the dog>]] chased <the man>]] cried at his misfortune

anti-missile missile , anti [anti-missile missile] missile , anti [anti [anti-missile missile] missile]
missile , . . .

Reversing or copying arbitrary length strings:
pittip , pitaatip , etc., vs. ⇤pitip , ⇤pitatip , ⇤pitaip

Tracking arbitrary cross-serial dependencies:
e.g., Swiss German above

(4) Phonology is regular: every known phonological pattern is regular (assuming reduplication is an
extra-phonological operation): Johnson 1972, Kaplan and Kay 1994, Heinz 2007, Heinz 2011, Heinz
and Idsardi 2011; thus by the above every known phonological grammar is regular

(5) Except that: if you were to take inside-out (cyclic) application seriously, then you would not have a
finite composition of finite-state transducers; you would have an unbounded composition of finite state
transducers, and it would not necessarily be regular anymore (the problem is with cases where the same
rule could reapply to its output from a previous cycle—examples below); Kaplan and Kay pointed this
out and left it as an open question as to how to deal with it

(6) Possible clues to biological underpinnings: Birdsong appears to be strictly regular (Berwick et al.
2011); the corresponding artificial grammar learning experiments showing failure to learn context-free
(i.e., non-regular) patterns by birds and monkeys, but not humans, are still the subject of debate; see
Fitch and Friederici 2012 for an optimistic discussion, Hochmann, Azadpour, and Mehler, 2008 for
criticism

(7) Today’s (weak) claim: Adding inside-outness to regular relations would make them super-regular; the
Strict Cycle Condition turns the composition of a potentially unbounded number of transducers
into the composition of a finite number of transducers

4

2 The phonological cycle

Chomsky, Halle, and Lukoff 1956, Chomsky and Halle 1968:

(8)

[[a nec dote] al]
[[0 0 0] 0]

Main Stress Rule [[0 0 1] 0]
Alternating Stress Rule [[1 0 2] 0]

Bracket Erasure [1 0 2 0]
[1 0 2 0]

Main Stress Rule [2 0 1 0]
Alternating Stress Rule –

Bracket Erasure 2 0 1 0
Vowel Reduction à n@c dót @l

à n@c dót @l

In parallel, Kiparsky (1973) noted that some processes seem to banned unless they appear in a “derived”
environment:

(9) Ruki rule (Sanskrit): s ! s. / {r,u,k, i}—

/si + snih/ ![sis.nih], “be sticky (perf.)”
(morpheme boundary)

/śa:s + ta/ ! [śista] (ablaut) ! [śis.ta] (ruki) ! [śis.t.a] “taught”
(environment changed by another process triggered by a morpheme boundary)

/bisa/ ! [bisa]
(no ruki)

Kean (1974) and Mascaró (1976), inspired by Chomsky (1973) connected this with the phonological cycle:

(10) Strict Cyclicity (1974 version):
Suppose we have [j[i P X i] Z j]. The domain of the j’th cycle is PXZ, where Z is the only material
uniquely in j. No rule R may apply on the jth cycle unless it makes crucial reference to Z

Strict Cyclicity (1976 addendum):
. . . or information assigned on cycle j by a rule applying before R.

5

(11)
[[tórna] u] [raím + ét] [[[triómf] ál] ízm] [nó [ínstár]]
[[tórna] u] [raím + ét] [[[triómf] ál] ízm] [nó [ínstár]]

Glide (unstressed after vowel) – – – –
Destress (if not last stress in word) – [raim + ét] – [nó [instár]]

Reduction (if unstressed) – [r@im + ét] – –
[tórna u] r@im + ét [[triómf ál] ízm] [nó instár]

GF [tórna w] – [nó jnstár]
Des. – [[triomf ál] ízm] –
Red. [tórn@ w] [[triumf ál] ízm] –

tórn@ w [triumf ál ízm] nó jnstár
GF –

Des. [triumf al ízm]
Red. [triumf @l ízm]

tórn@w r@imét triumf@lízm nójnstár

(12) Lexical phonology: assumed all this; also proposed a division between the cyclic phonology and the
post-cyclic/post-lexical phonology, where the cyclic phonology always had to obey an even stronger
version of the SCC which would block any rule activity properly within a cycle (cycle 0 activity was
somehow special, but the ideas are not quite aligned, since by now the system was understood to be “in
the lexicon”)

(13) Modern times: a move away from lexicalism, and back to cyclic operations “on the PF side”; cyclic
morphological operations/Vocabulary Insertion assumed/argued for in Embick 2010, Bobaljik 2012

(14) To syntacticians: Remember, SCC (even SCC74) is a weaker condition than the opacity+locality
principles in syntax that say “don’t do anything down there at all”; Embick (2013) points to several
phonological examples of reaching “down there” which are fine by the SCC but not if we add “escape
hatch only” type locality.

(15) Trigger “down there”:
Turkish Backness Harmony (left to right): [[[

p
Root] n] a], n is a phase head,

p
Root is the

complement of n, and the Phase Impenetrability Condition says “the complement of n is invisible to
operations in the domain of a,” yet, lo and behold:

[[[merhamet] ø] sIz] ! merhametsiz, “compassionless”
[[[bilim] ø] sAl] ! bilimsel, “scientific”

(16) Target “down there”:
Turkana ATR Harmony (right to left): [[· · · [[

p
Root] v]] n]

[[e [k [[ImUj] ø]]] e] ! ekimuje, “way of eating”
[[e [[cIlIcIl] ø]] e] ! ecilicile, “way of scratching”

(17) Clearing up a point of possible confusion. Although it looks like we are treating all brackets as equal,
(you can see that) phonologists too distinguish cyclic/phasal nodes and treat the rest of the
morphosyntactic structure as phonologically largely inactive (cf., sub-cyclic +/= boundary symbols used
in SPE, affix levels in Lexical Phonology); this is orthogonal to the theoretical argument I’m about to
make

6

3 Phonology as regular relations

(18) Simplified Catalan.
Glide Formation Destressing

u!w /

8
>><

>>:

á,
a,
ú,
u

9
>>=

>>;
— ú ! u

á ! a / —

*8
<

:

a,
u,
C

9
=

;

+

0

⇢
á,
ú

�

(19) GF > Des. These are two regular relations. Compose GF � Des. The result (G) is still regular.

(20) Two-level grammar. Now that one process feeds another, we need to look at the “two-level grammar”
to understand what is going on, as before (Kaplan and Kay 1994, Karttunen and Beesley 1992; see there
also for the “same-length relation” trick, which avoids the problem whereby regular relations are not
closed under intersection):

Glide Formation Destressing

u!w /

8
>>>>>>>>>><

>>>>>>>>>>:

á,
a,
ú,
u,⌧
ú
u

�
,

⌧
á
a

�

9
>>>>>>>>>>=

>>>>>>>>>>;

— ú ! u
á ! a / —

*

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

a,
u,⌧
ú
u

�
,

⌧
á
a

�
,

⌧
u
w

�
,

C

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

+

0

⇢
á,
ú

�

In other words, we’ve broken down the relation into two regular languages of strings of pairs (i.e.,

input–output correspondences), i.e. the languages where the pairs
⌧

u
w

�
/
⌧

á
a

�
/
⌧

ú
u

�
occur (as

opposed to pairs where the left side does not change to the given segment) if and only if they appear in
the given environment—where now the environment can have other non-identity pairs in it. We get back
G just by taking the intersection of the two.

(21) A note on interactions: We have a change
⌧

u
w

�
, but not

⌧
ú
w

�
, because of the order of rule

application (the only potential interaction here)

(22) A note on reapplication: Destressing is a “left to right reapplying” rule (because it affects all the
non-final stressed vowels, not just one: see Kenstowicz and Kisseberth 1979); this means that one single
application (within a single cycle) actually needs to have pairs in its environment (that’s where⌧

á
a

�
,

⌧
ú
u

�
come from). One-shot reapplication does not cause the kind of problems that cyclic

reapplication does.

(23) A note for phonologists: These two-level grammar rules can be seen as filters on input-output
correspondences. In this respect two-level grammars are a lot like OT constraints; the only thing that
differs is the mode by which they are combined (OT doesn’t use intersection: see Eisner 1997, Riggle
2009). Yet we can state any phonological grammar like this, with or without opaque interactions. That’s
because isn’t the “state things as two-level filters” part of OT that gives problems with opacity; the
culprit is the (informal and sometimes weakened) “use output filters” part of “Classical” OT (see
Buccola 2013 for discussion).

7

(24) The trouble with the cycle. The SPE (unrestricted) cycle, given a relation R:

1. Modify R so that it only affects content between the innermost pair(s) of brackets, inclusive (and
otherwise leaves everything as is) ! R0
2. E is Bracket Erasure, which deletes (or marks as invisible) any pair of brackets with no brackets
inside
3. Cycle 0 is just R0; cycle 1 is R0ER0; cycle 2 is R0ER0ER0; and so on

(25) The most important thing. Matching the brackets is not the problem—this is not our job, this is the
job of the morphology/syntax—

(26) But. There is still a problem.

(27) Example. b!c / —
⇢

c
a

�

[
⌧

b
c

�
a] ⇤[ba]

[b
⌧

b
c

�
a] ⇤[bba], ⇤[

⌧
b
c

�⌧
b
c

�
a], ⇤[b

⌧
b
c

�⌧
b
c

�
a], ⇤[

⌧
b
c

�⌧
b
c

�⌧
b
c

�
a]

[b
⌧

b
c

�
[
⌧

b
c

�
a]] ⇤[bb [

⌧
b
c

�
a]]

[b [
⌧

b
c

�⌧
b
c

�
a]] ⇤[b [b

⌧
b
c

�
a]]

OK to do: R1 [R2 [· · ·[Rk
Not OK in general: R1 [R2 [· · ·

In this case, cyclic reapplication forces us to match the
⌧

b
c

�
elements to the bracketing in the input;

can easily show that this language is not regular.

(28) 0-cyclic convergence. Cyc0(R, i) is R0(ER0)i as above. Cyc0(R) is the countable union of the Cyc0(R, i)
which leave no nested brackets behind (i.e., leaving out the sets of pairs where Cyc0(R, i) applies but
there are > i cycles in the input). R is 0-cyclic convergent if R0ER0 = ER0.

(29) Claim. 0-cylic convergent regular relations have regular Cyc0(R). Proof. Suppose R0ER0 = ER0.
Provided the domain of R is not restricted (i.e., it is S⇤), so that every output of ER0 is also a valid input
for R0, we have Cyc0(R,2) = R0ER0ER0 = ER0ER0 = EER0. By an easy induction Cyc0(R, i) = EiR0.
Since the countable union of Ei over inputs with i cycles just deletes all but the outermost brackets, it
obviously corresponds to a regular relation E0, and Cyc0(R) = E0R0.

(30) Brackets. Obviously erasing brackets will not do if we are working with derived environment effects,
where grammars are sensitive to the morphological structure. The SCC presupposes a slightly different
version of the cycle. However, as long as we sometimes erase brackets, we can get a similar result.

(31) k-cyclic application. Define Cyck(R, i) as Rk(ERk)
i, where Rk is R applied to only the innermost k+1

levels of nesting. The way k-cyclic application works, rather than deleting all but the outer 1(= 0+1)
pairs of brackets, we delete brackets—the one innermost pair—only after the k’th cycle, and leave
behind the outer k+1 pairs of brackets for Rk to see.

(32) k-cyclic convergence. Cyck(R) is the countable union (over i, not k) of the subsets of Cyck(R, i) which
leave no nested brackets behind, analogous to the above. R is k-cyclic convergent if Rk(ERk)

i = Rk+iEi.

8

(33) Note. k-cyclic convergent regular relations have regular Cyck(R). Notice that k is fixed and, for the
strings in Cyck(R), k+ i is always the outermost cycle and Ei simply deletes all but the outermost k
brackets.

(34) What this means. We can construct grammars which make crucial use of up to k brackets, for some
fixed k; as long as they are k-cyclic convergent, then there is a corresponding cyclic grammar. We need
k = n to get a not-too-fuzzy statement of the SCC, where n is the number of distinct segmental
non-identity input–output pairs licensed by the grammar

(35) Example. b!c / —[

8
>><

>>:

c
a⌧
b
c

�

9
>>=

>>;

[ba] ⇤[
⌧

b
c

�
a]

[[
⌧

b
c

�
] a] ⇤[[b] a]

[
⌧

b
c

�
[
⌧

b
c

�
[a]]

4 Formalizing strict cyclicity

(36) Strict Cyclicity:

Given some relation Q (the original grammar), get R (the SCC-compatible grammars) as follows:

1. Consider Q as a two-level grammar. Let T0 be the set of all non-identity pairs t in any pair-string
in the language. For each t , E1

t is the set of all pair-strings containing a special symbol ? where, if
the pair t occurs, it is always in the position of ? in some pair-string of E0

t , and, if any element of
E1

t occurs as a substring (i.e., with any material whatsoever after the left or right edges) with some
pair s having the same upper symbol of t , a, in place of ?, then s = t .

2. Let n = |T0|. Construct T as the set of all non-identity pairs in any pair-string in Qi for any
i n. Construct Ei

t as the set of all non identity pairs in any pair string in Qi for any 1 < i n. No
new pairs (note: pairs—not environments) will be found in Qi for i > n, because additional
changes not present in Q can only arise as the result of t being composed with some other change
s , or with the composition with two changes, etc., but no more than n�1 can be distinct. Add
generalizations to any sequences in an environment drawn from Qi wzx, where and zx but not wzx

is in Qi�1, and w differs from z only by containing
⌧

?
a

�
where z has

⌧
a
a

�
(on the right; or

vice versa on the left): generalize by adding wx to the set of environments. Now, for each t:
(a) for all the environments e1 in E1

t , let e1
l be the string concatenated with a left bracket at the

left edge and no other left brackets appearing on the left side of ?, and at least one left bracket
on the right side of ? . . .

(b) . . . e1
r the string concatenated with a right bracket at the right edge, with no other right

brackets to the right of ? and at least one right bracket on the left side of ?
(c) for all the environments e2 in E2

t , let e2
l be the string with at least one left bracket inserted to

the left of ?, but not only at the left edge of the string, and left brackets freely ignored on the
right side of ?; for ei in Ei

t , require at least i�1 left brackets . . .

9

(d) . . . let e2
r be the string with at least one right bracket (at least i�1 for ei) inserted to the right

of ?, but not only at the right edge of the string, and right brackets freely ignored on the left
side of ?.

(e) (To handle the phonological derived environment cases): for each of the environments in E1
t

which itself contains a non-identity mapping s at position ??, add an environment which
consists of e1

l /e1
r , except with no requirement for a bracket on the inner side, and with both ?

and ?? on the inside of the necessary bracket, intersected with each of the (c–d) environments
for s . The resulting environments always fall into case (c–d), so this does not change the
proof.

3. The union of all these is Et .
4. R is the intersection of all the languages derived from Et as in 1.

(37) Proof of n-cyclic convergence. Not actually required to show regularity, but important nevertheless: in

(very) short, we essentially need to show that if
⌧

w
x

�
(here I now mean strings rather than just

symbols) and
⌧

axb
cyd

�
then

⌧
awb
cyd

�
. This has nothing to do with brackets: the changes in

⌧
w
x

�

cannot be affected by their surroundings because of the way we have set up the language (the change(s)

in
⌧

w
x

�
need to have environments within

⌧
w
x

�
that are satisfied, and would be satisfied no matter

what else we surround them with); so
⌧

w
y

�
only if there are some other changes surrounding the ones

we already knew about which are licensed by some outside material. Whatever those other changes are,

they must necessarily be the same ones we find in
⌧

x
y

�
, because otherwise we could not have y on the

bottom. That means the whole central part is licit in the given environment. Once we know that the
changes in the middle are licit, however, it means the whole string must be, otherwise we would never
have obtained this environment for any of the middle part from applying the original grammar.

(38) Intuition. The construction is frankly not that interesting either. In fact, were we to remove the
“generalize” clause from 2, we would not need derived environment blocking, because the environments
we obtain for a given t would only go up to those we find up to cycle k, which gives us a finite
intersection. Funnily, we add this clause, we do not particularly need derived environment blocking
either, because we have actually just created a reapplication (i.e., unbounding spreading) rule—

(39) However —this would then be at odds with the local pattern we have within stems (given Q). We
observe that certain patterns are only possible via cyclic reapplication of the grammar (i.e., reapplication
triggered by the addition of morphemes), and SCC is a way of capturing this without running afoul of
regularity. The mechanism is merely to look at the morphological structure we are given in the input
rather than trying to count reapplications (which we can’t do).

(40) When would this matter? If, for example, spreading is only observed locally within words but to 2
segments when it crosses a morpheme boundary, then the learner will ceteris paribus allow it to occur
across arbitrarily many morpheme boundaries—and with the (e) clause, it becomes unbounded within
morphemes after cycle 0; if it is observed more than locally word-internally, then the learner may
simply generalize it to unbounded spreading (within Q).

10

5 Some thoughts

(41) Why SCC? There are certainly other compatible solutions; for example, we might have derived
environment blocking only for problematic processes! If we could show that the strategy was
nevertheless in some sense “optimal” then we would have a very good candidate for an explanation:
cyclic opacity exists to make phonology possible

(42) Two possibilities for integrating the analysis with syntax:
(i) analogy: there is a similar reason for cyclic opacity (or even locality) effects in syntax—making do
with the mechanisms we have available—(distinct from “reduction of computational burden” in the
normal sense)—which similarly allows us a “moving window” analysis; but the need for phonological
interpretation is not the limiting factor
(ii) reduction: cyclic opacity effects in syntax are driven by the to phonological interpretation:
phonological interpretation requires opacity, thus syntax requires opacity

(43) The trouble with reduction. Syntax is not regular, and so the operations that need restricting
(movement) are not even in the domain of what we are talking about

(44) The trouble with analogy. There is then no real reason to think that the cyclic nodes should be in any
way the same in morphosyntax/phonology (which is maybe fine)

Acknowledgments

Work was supported in part by the European Research Council under the European Union’s Seventh Framework
Programme (FP/2007-2013) / ERC Grant Agreement ERC-2011-AdG-295810 BOOTPHON, from the Agence
Nationale pour la Recherche (ANR-2010-BLAN-1901-1 BOOTLANG) and from the Fondation de France,
ANR-10-IDEX-0001-02 and ANR-11-LABX-0087.

References

Berwick, Robert C., Kazuo Okanoya, Gabriel J.L. Beckers, and Johan J. Bolhuis (Mar. 2011). “Songs to syntax:
the linguistics of birdsong”. In: Trends in Cognitive Sciences 15.3, pp. 113–121. ISSN: 13646613. DOI:
10.1016/j.tics.2011.01.002.

Bobaljik, Jonathan David (2012). Universals in Comparative Morphology. Cambridge, MA: MIT Press.
Buccola, Brian (2013). Two proofs that classic Optimality Theory is expressively weaker than ordered rewrite

rules. Unpublished ms, McGill. Montreal.
Chomsky, Noam (1973). “Conditions on transformations”. In: A Festschrift for Morris Halle. Ed. by Stephen

Anderson and Paul Kiparsky. New York: Holt, pp. 232–286.
– (1995). The Minimalist Program. Cambridge, MA: MIT Press.
– (1999). “Derivation by phase”. In: MIT Occasional Papers in Linguistics 18.
Chomsky, Noam and Morris Halle (1968). The Sound Pattern of English. Harper and Row.
Chomsky, Noam, Morris Halle, and Fred Lukoff (1956). “On accent and juncture in English”. In: For Roman

Jakobson, 65–80.
Eisner, Jason (1997). “Efficient generation in primitive Optimality Theory”. In: Proceedings of the eighth con-

ference on European chapter of the Association for Computational Linguistics. Association for Computa-
tional Linguistics, 313–320.

Embick, David (2010). Localism versus Globalism in Morphology and Phonology. Cambridge, MA: MIT
Press.

11

– (2013). “Phase cycles, j-cycles, and phonological (in) activity”. In: Manuscript, University of Pennsylvania.
Forthcoming in Festschrift for Jean Lowenstamm.

Fitch, W. T. and A. D. Friederici (July 2012). “Artificial grammar learning meets formal language theory: an
overview”. In: Philosophical Transactions of the Royal Society B: Biological Sciences 367.1598, pp. 1933–
1955. ISSN: 0962-8436, 1471-2970. DOI: 10.1098/rstb.2012.0103.

Heinz, Jeffrey (2007). “Inductive learning of phonotactic patterns”. PhD Thesis. UCLA.
– (Apr. 2011). “Computational Phonology - Part I: Foundations”. In: Language and Linguistics Compass 5.4,

pp. 140–152. ISSN: 1749818X. DOI: 10.1111/j.1749-818X.2011.00269.x.
Heinz, Jeffrey and William Idsardi (July 2011). “Sentence and Word Complexity”. In: Science 333.6040,

pp. 295–297. ISSN: 0036-8075, 1095-9203. DOI: 10.1126/science.1210358.
Hochmann, Jean-Remy, Mahan Azadpour, and Jacques Mehler (Sept. 2008). “Do Humans Really Learn An Bn

Artificial Grammars From Exemplars?” In: Cognitive Science: A Multidisciplinary Journal 32.6, pp. 1021–
1036. ISSN: 0364-0213. DOI: 10.1080/03640210801897849.

Johnson, C. Douglas (1972). Formal Aspects of Phonological Description. The Hague: Mouton.
Kaplan, Ronald M. and Martin Kay (1994). “Regular models of phonological rule systems”. In: Computational

Linguistics 20.3, 331–378.
Karttunen, Lauri and Kenneth Beesley (1992). Two-level rule compiler. Xerox PARC Technical Report ISTL-

92-2. Palo Alto, California.
Kean, Mary-Louise (1974). “The Strict Cycle in Phonology”. In: Linguistic Inquiry 5, pp. 179–203.
Kenstowicz, Michael and Charles Kisseberth (1979). Generative Phonology. San Diego: Academic Press.
Kiparsky, Paul (1973). “Phonological representations”. In: Three Dimensions of Linguistic Theory. Ed. by

Osamu Fujimura. Tokyo: TEC.
Mascaró, Joan (1976). “Catalan Phonology and the Phonological Cycle”. PhD Thesis. Massachusetts Institute

of Technology.
Riggle, Jason (2009). “Violation semirings in Optimality Theory”. In: Language and Computation 7, pp. 1–12.
Shieber, Stuart (1985). “Evidence against the context-freeness of natural language”. In: Linguistics and Philos-

ophy 8, pp. 333–343.

12

