INTRAPARADIGMATIC CYCLIC AND ROLL-UP DERIVATIONS IN THE OLD NORSE REINFORCED DEMONSTRATIVE*

Eric T. Lander, Ghent University eric.lander@ugent.be

Cinque (2005) takes a very broad crosslinguistic approach in his study of Greenberg's (1963) $20^{\text {th }}$ universal

Here: one language, one paradigm

GOALS

- A fine-grained morphological decomposition of the reinforced demonstrative pronoun (RDem) in Old Norse (ON)
- Show that there are three different kinds of structures within the ON RDem paradigm
- Using Cinque's (2005) U20 framework, (a) deduce the functional sequence of RDem, (b) derive the three structures, and (c) explain why only these three structures/derivations are available

1. Historical Background

RDem is a defining morphological innovation of Northwest Germanic (NWGmc); it is absent in East Germanic (Gothic) (see Lander 2013). ${ }^{1}$

$(1)^{2}$		F.NOM.SG	M.NOM.SG	N.NOM/ACC.SG
North Gmc	$\left\{\begin{array}{l} \text { Runic Norse }(\mathrm{c} .800-\mathrm{c} .1050) \\ \text { Old Norse }(\mathrm{c} .1050-\mathrm{c} .1300) \end{array}\right.$	súsi sjá/bessi	sási sjá / bessi	patsi petta
West Gmc	$\left\{\begin{array}{l} \text { Old English }(\mathrm{c} .650-1066) \\ \text { Old Frisian }(\mathrm{c} 1150-\mathrm{c} .1550) \\ \text { Old Saxon (c. } 830-\mathrm{c} .1200) \\ \text { Old High German }(\mathrm{c} .750-\mathrm{c} .1050) \end{array}\right.$	pēos thius thius dësiu	pe(:)s this these dësēr	pis thit thit diz
	(Lander in prep.)			

[^0]In Proto-NWGmc, RDem was formed by adding the particle ${ }^{*}-s i /-s e^{3}$ to the neutral demonstrative (Dem) 'that':
(2) NWGmc neutral demonstrative + reinforcer particle

	F.SG	M.SG	N.SG	F.PL	M.PL	N.PL
NOM	sō	sa	pat	pōz	pai	pō
ACC	pō	pan(-)	bat	pōz	panz	pō
GEN	baizōz	bas	bas	paizō	paizō	paizō
DAT	paizē	baim	paim	paim(z)	paim(z)	paim(z)

(based on Nielsen's 2000: 230-5 reconstruction of Early Runic Dem)
The archaic 'Dem-si' stage of NWGmc is preserved in some Runic Norse (RN) inscriptons. ${ }^{4}$

$(3)^{5}$	F.NOM.SG	susi	(súsi)	<	NWGmc *sō-si
	M.NOM.SG	saR:si	(saRsi)		
	M.NOM.SG	sasi	(sási)	<	NWGmc *sa-si
	M.ACC.SG	pan:si (bansi)pansi (pansi)			
				<	NWGmc * ${ }^{\text {a }}$-n-si
	N.ACC.SG	pat:si	(batsi)		
		patsi	(patsi)	$<$	NWGmc * ${ }^{\text {a }}$-t-si
	M.DAT.SG	paimsi	(basimsi)	$<$	NWGmc *pai-m-si

The structures in (2) and (3) typify 'internal inflection'

$$
\text { Internal inflection }=\text { case ending }(\mathrm{K}) \text { is to the left of the reinforcer component }(\mathrm{R})
$$

(4) Early stage: internal inflection in RN
M.DAT.SG pceimsi
$\begin{array}{lll}\text { pæi- } & -\mathrm{m} & -\mathrm{si} \\ \mathrm{D} & \mathrm{K}_{\text {Dem }} & \mathrm{R}\end{array}$
where $\mathrm{D}=$ Dem stem
Next stages in historical development

- Reinforcer $-s(i)$ absorbed into the Dem stem \rightarrow new RDem stem
- RDem stem inflected with strong adjective endings
(Haugen 1982: 100-101; EWAhd II: 611, 613)

General shift from internal inflection to external inflection

External inflection $=\mathrm{K}$ is to the right of R

As seen in ON:
(5) Later stage: external inflection in ON
M.DAT.SG pessum
$\underbrace{\substack{\text { pe- } \\ \mathrm{D} \\ \mathrm{r}^{- \text {ss }} \\ \mathrm{R}}}{ }^{\text {-um }} \mathrm{K}$
RDem stem

Though some internal inflection does survive into the later stages:
(6) Internal inflection in ON
M.ACC.SG penna
$\begin{array}{lll}\text { pe- } & \text {-n } & \text {-na } \\ \mathrm{D} & \mathrm{K} & \mathrm{R}\end{array}$

2. Decomposing the reinforced demonstrative in Old Norse

I focus on the internal syntax of the 24 forms in (7)
(7) ON RDem (Gordon 1956: 295)

	F.SG	M.SG	N.SG	F.PL	M.PL	N.PL
NOM	bessi	bessi	betta	bessar	bessir	bessi
ACC	pessa	benna	betta	bessar	bessa	bessi
GEN	pessar	bessa	pessa	bessa	bessa	pessa
DAT	pessi	pessum	pessu	bessum	bessum	bessum

A lot has happened between RN (3) and ON (7): the RN Dem-si forms are transparent and easily decomposable; ON forms appear to be more opaque ${ }^{6}$

Three observations about (7)
(2.1) RDem base $p e$ -
(2.2) Boxed forms $=$ pess-K
(2.3) Two kinds of non-boxed forms

2.1. First observation

> Every form begins with pe-(= RDem base)
(8) Parsing at $p e$ - boundary

	F.SG	M.SG	N.SG	F.PL	M.PL	N.PL
NOM	be-ssi	be-ssi	be-tta	pe-ssar	pe-ssir	pe-ssi
ACC	be-ssa	be-nna	be-tta	pe-ssar	pe-ssa	pe-ssi
GEN	pe-ssar	pe-ssa	pe-ssa	pe-ssa	pe-ssa	pe-ssa
DAT	pe-ssi	pe-ssum	pe-ssu	pe-ssum	pe-ssum	pe-ssum

To identify $p e$-, consider the ON Dem paradigm in (9):
(9) ON Dem

	F.SG	M.SG	N.SG	F.PL	M.PL	N.PL
NOM	sú	sá	pa-t	p-ær / b-ár	pei-r	pa-u
ACC	b-á	pa-nn	pa-t	p-ær / b -ár	p-á	pa-u
GEN	pei-(r)rar	pe-s(s)	pe-s(s)	pei-(r)ra	pei-(r)ra	pei-(r)ra
DAT	pei-(r)ri	pei-m	b-(v)í / p-y	pei-m	pei-m	pei-m

(Gordon 1956: 295, Haugen 1982: 101)
> Three kinds of Dem stems, which are inflected with demonstrative case endings
$\left[\begin{array}{l}p-(10 \mathrm{a}-\mathrm{d}) \\ p e i-(10 \mathrm{e}-\mathrm{j}) \\ p a-(10 \mathrm{k}-\mathrm{m})\end{array}\right]+-\mathrm{K}_{\text {Dem }}$
(10) (a) F.ACC.SG p-á
(b) F.NOM/ACC.PL p-ær, p-á
(c) M.ACC.PL p-á
b-(v)í, $p-\bar{y}$

5

(e)	F.GEN.SG	pei-(r)rar
(f)	F.DAT.SG	pei-(r)ri
(g)	M.DAT.SG	pei-m
(h)	M.NOM.PL	pei-r
(i)	GEN.PL	pei-(r)ra
(j)	DAT.PL	pei-m
(k)	M.ACC.SG	pa-n(n)
(l)	N.NOM/ACC.SG	pa-t
(m)	N.NOM/ACC.PL	pa-u

ON $b-\quad<$ PGmc $* p$ -
ON pei- < PGmc *bai-
ON $p a-$ < PGmc * $b a-$

Other

(n) M/N.GEN.SG be-s(s) < PGmc *pe-s [root vocalism e instead of expected $a]$
(o) F.NOM.SG su $<$ PGmc *so
(p) M.NOM.SG
sá $<$ PGmc*sa

RDem base is $p e$ - instead of $b a$ - or $b e i$ - for at least three reasons (historically speaking)

```
- Phonotactics
    - Influence of genitive stem be-
- I-umlaut triggered by -si
```


> Phonotactics

Proto-Norse ${ }^{*} R s>\mathrm{ON} s$
11) Proto-Norse * $R s>$ ON $s s$ in RDem

(a)	F.GEN.SG	*beiRaR-si	$>$	*beiRa-ssi
(b)	DAT.PL	*beimR-si	$>$	*beim-ssi
(c)	M.NOM.PL	bein-si $($ piRsi $($ Sö 346))	$>$	*bei-ssi
(d)	F.NOM/ACC.PL	bēR-si $($ paRsi $($ Sö 40) $)$	$>$	*pē-ssi

- Transition from internal to external inflection -
(12)

(a)	*bei-Ra-ssi	>	*bei-ss(i)-	>	ON pess-ar
(b)	*bei-m-ssi	>	*bei-ss(i)-	>	ON bess-um
(c)	*pei-/-ssi	>	*bei-ss(i)-	>	ON pess-ir
(d)	*bē-/-ssi	>	*pē-ss(i)-	>	ON pess-ar

Note the 'transitional stems' *beiss- and *bēss- in (12)

- Syllabification fails because ss is an impermissible onset': *pei.ssar / *pee.ssar \rightarrow Pressure to reduce the long vowel/diphthong to e : pes.sar
> Influence of M/N.GEN.SG Dem $p e-s(s)$
Stem $=p e-$
The spread of the genitive stem is not uncommon in other Germanic demonstrative paradigms
- Gothic Dem paradigm shows genitive stem pi- (< PGmc *pe-) in more slots that the PGmc Dem paradigm
- In West Germanic, the RDem s-geminated stems OE piss- and OF thiss- have probably been influenced by a genitive form (cf. OHG M/N.GEN.SG dëss-es) (see EWAhd II: 612-613)
> I-umlaut triggered by -si
-si reinforcer could trigger i-umlaut (Nielsen 2000: 237, n.3)
Evident from spelling alternations robustly attested in RN:
$(13)^{8} \quad a>e$ by i-umlaut

(a)	M.ACC.SG	ban(:)si (pansi)	vs. pensi or pinsi (bensi)
(b)	N.ACC.SG	pat(:)si (patsi)	vs. pitsi (betsi)
(c)	F.ACC.SG	$\mathbf{p a}() \mathrm{si}$ (bāsi)	vs. besi (bēsi)

These three historical influences co-conspired to produce a leveling effect in the RDem paradigm
\rightarrow RDem base with root vocalism e

Synchronically, I will treat the RDem base $p e$ - as the i-umlauted allomorph of the Dem stem $p a$ -
2.2. Second observation

> The boxed forms

A big chunk of the paradigm shows the stem pess- + strong adjective endings (of the n-type class)
(14) pess-K = 'boxed forms'

	F.SG	M.SG	N.SG	F.PL	M.PL	N.PL
NOM	bessi	bessi	betta	pess-ar	bess-ir	bessi
ACC	bess-a	benna	betta	bess-ar	pess-a	bessi
GEN	bess-ar	bessa	bessa	bess-a	pess-a	bess-a
DAT	bess-i	bess-um	bess-u	bess-um	pess-um	bess-um

[NB: pessa is not boxed because $-a$ is not the K ending in (15)]
(15) n-type strong adjective endings

	F.SG	M.SG	N.SG	F.PL	M.PL	N.PL
NOM	$-\varnothing$	-r	-t	-ar	-ir	$-\varnothing$
ACC	-a	-n	-t	-ar	-a	$-\varnothing$
GEN	-rar	-s	-s	-ra	-ra	-ra
DAT	-ri	-um	-u	-um	-um	-um

Members of n-type class

- Bisyllabic adjectives ending in -inn
- Past participles of strong verbs
- Various D-like items: -inn 'the' (< hinn 'that'); minn 'my', pinn 'your', sinn ‘3.POSS.REFL'; einn 'one'; nqkkurr 'some, any', hverr 'who'
(Gordon 1956: 290, Faarlund 2004: 38)
- RDem
(16) hinn, hin, hit 'that, the' (Faarlund 2004: 38)

	F.SG	M.SG	N.SG	F.PL	M.PL	N.PL
NOM	hin- \varnothing	hin-n $(<$ hin-r)	hit $(<$ hin-t)	hin-ar	hin-ir	hin- \emptyset
ACC	hin-a	hin-n	hit $(<$ hin-t)	hin-ar	hin-a	hin- \emptyset
GEN	hin-nar $(<$ hin-rar)	hin-s	hin-s	hin-na $(<$ hin-ra)	hin-na $(<$ hin-ra $)$	hin-na $(<$ hin-ra $)$
DAT	hin-ni $(<$ hin-ri)	hin-um	hin-u	hin-um	hin-um	hin-um

> One apparent exception to the 'boxed form' generalization
The r of the r-initial endings is absent in the corresponding RDem forms:
(17) (a) $\begin{array}{lll}\text { F.GEN.SG } & -r a r \\ & & \text { F.DAT.SG } \\ & \text { GEN.PL } & -r i \\ & & -r a\end{array}$
(b) F.GEN.SG pess-ar

F.DAT.SG	bess- \boldsymbol{i}
GEN.PL	pess- \boldsymbol{a}

Not surprising in the context of ON phonology: inflectional r is highly vulnerable to assimilation
(18) (a) $s r>s s$
(b) M.NOM.SG laus-r 'loose' > lauss

In the case of RDem:
(19) (a) $s s r>s s$
(b) cf. hvass- 'sharp'
F.GEN.SG hvass-ar
F.DAT.SG hvass- \boldsymbol{i}

GEN.PL hvass-a
The rule in (19) could be viewed as deletion/cluster reduction instead of assimilation. The reduction of clusters involving geminates is also a well known ON phenomenon (Noreen 1923: 207-208, Barnes 2004: 101, inter alios). ${ }^{9}$
2.3. Third observation
> Two kinds of non-boxed forms
The bolded forms end in $-i$ and the italicized forms end in $-a$
(20) Two kinds of non-boxed forms (bolded and italicized)

	F.SG	M.SG	N.SG	F.PL	M.PL	N.PL
NOM	pessi	pessi	petta	pess-ar	bess-ir	pess-i
ACC	bess-a	benna	petta	bess-ar	bess-a	pess-i
GEN	bess-ar	bessa	pessa	bess-a	bess-a	pess-a
DAT	bess-i	bess-um	bess-u	bess-um	bess-um	bess-um

Again, boxed forms consist of stem pess- +K endings from (15)

Non-boxed forms do NOT end with K endings in (15)

> Bolded forms

- End in $-i$ and surface as pessi
- Do not show K overtly - we see neither M.NOM.SG $-r$ nor F.NOM.SG / N.NOM/ACC.PL - \varnothing
> Italicized forms
- End in $-a$
$\bigcirc=$ 'secondary reinforcer' specific to North Gmc (i.e. developed after NWGmc *-si) ${ }^{10}$
- Do show K overtly: K is word-internal and geminated

$p e-n n-a$	$(\mathrm{~K}=-n)$
$p e-t t-a$	$(\mathrm{~K}=-t)$
$p e-s s-a$	$(\mathrm{~K}=-s)$

Improvement on the 'traditional' decomposition of RDem

- Haugen (1976: 157) claims that there are three RDem stems: pess-, penn-, pett-
- Triple-stem approach is too superficial - it says nothing meaningful about the position of K , since the non-boxed forms do not end in K (pessi, penna, petta, pessa)

3. Descriptive templates

3.1. The boxed forms

$>p a-s s^{i}-\mathrm{K}$
$\left[\begin{array}{lll}p a- & \begin{array}{l}-s s^{i}- \\ \text { base } \\ \text { geminated } s \text {-reinforcer } \\ \text { with floating } i\end{array} & \text {-K } \\ & \text { case inflection }\end{array}\right]$
$b a-+i$-umlaut $=b e$
Historically, ON -ss- $<\mathrm{PN}{ }^{*}-R-s i$

- where the reinforcer *-si was known to condition i-umlaut (see (11-13))

Thus we may represent -ss- as -ss ${ }^{i}$ - (i.e. ${ }^{*} R s i>s s^{i}$)

- where 'floating i ' (= $[+$ front, - low $])$ induces i-umlaut and subsequently deletes
(21) pa-ssi-K $>$ pe-ss-K

Cf. Gibson \& Ringen (2000): morphemes that induce Y-umlaut in modern Icelandic contain a 'floating bundle of [+ round, - back] features in their phonological structures
3.2. The italicized forms

> $p a-\mathrm{KK}^{\mathrm{i}-a}$

$\left[\begin{array}{lll}b a- & -\mathrm{KK}^{i}- \\ \text { base }\end{array} \quad \begin{array}{l}\text { geminated K} \\ \text { with floating } i\end{array} \quad \begin{array}{l}-a \\ a \text {-reinforcer }\end{array}\right]$

Same thing - floating i triggers umlaut then deletes:
(22) ba-nn ${ }^{i}$-a $>$ be-nn-a ba-tti-a
ba-ssi-a $\gg \begin{aligned} & > \\ & >\end{aligned}$
3.3. The bolded forms and the phonology of floating i
> $p a-K-s s^{i}$
$\left[\begin{array}{lll}p a- & - \text { K } \\ \text { base } & \begin{array}{l}\text { case inflection }\end{array} & \begin{array}{l}-s s^{i}- \\ \text { geminated } s \text {-reinforcer } \\ \text { with floating } i\end{array}\end{array}\right]$
$>$ pessi, so in this template floating i surface

It is still unclear where K is located in the bolded forms, which all surface as pessi
> Understanding the phonology of floating i will give us a test for locating K in the bolded forms Weak i-stem verbs in ON

Verbal root plus a "stem-forming suffix" $-i$ (Faarlund 2004: 45) [= floating i]
E.g. dem- 'judge' $=$ underlyingly dow $^{i}{ }^{i}$ -

- where o : goes to \varnothing : $\langle œ>$ by i-umlaut
(23) (a) Verb endings

	SG	PL
$\mathbf{1}$	$-\varnothing$	-um
$\mathbf{2}$	-r	-ið
$\mathbf{3}$	-r	-a

(b) Present indicative of doem-/dōm ${ }^{\text {i }}$ -

	SG	PL
$\mathbf{1}$	dœmi	dœm-um
$\mathbf{2}$	dœm-ir	dœm-ið
$\mathbf{3}$	dœm-ir	dœm-a

Three observations about floating i

- Deletes before vowel	
- Surfaces word-finally	
-	Deletes in medial open syllable (Johnsen 2012)

> Floating \boldsymbol{i} is deleted before a vowel

(24) $\begin{array}{llll}\text { 1.PL } & \text { dōm }{ }^{\mathrm{i}} \text {-um } & > & \text { dœm-um } \\ & \text { 2.PL } & \text { dōm } \mathrm{i} \text { ið } & > \\ \text { dœm-ið } \\ & \text { 3.PL } & \text { dōm }{ }^{\mathrm{i}}-\mathrm{a} & > \\ \text { dœm-a }\end{array}$

Also applies to a majority of the RDem forms:
(25) Floating i deletes before vowels

	F.SG	M.SG	N.SG	F.PL	M.PL	N.PL
NOM	pessi	pessi	pett-a	pess-ar	pess-ir	pessi
ACC	pess-a	penn-a	pett-a	pess-ar	pess-a	pessi
GEN	pess- + -rar	pess-a	pess-a	pess- + -ra	pess- + -ra	pess- + -ra
DAT	pess- + -ri	pess-um	pess-u	pess-um	pess-um	pess-um

> Floating \boldsymbol{i} surfaces word-finally

(26) 1.SG dōmí-Ø $>$ domi

Relevant for the bolded RDem forms

[^1](b) Floating i surfaces word-finally in bolded forms

	F.SG	M.SG	N.SG	F.PL	M.PL	N.PL
NOM	pessi	pessi	pett- a	pess-ar	bess-ir	pessi
ACC	bess-a	penn- a	pett- a	pess-ar	bess-a	pessi
GEN	bess- + -rar	pess- a	pess- a	pess- + -ra	bess- +-ra	pess- + -ra
DAT	bess- + -ri	pess-um	bess-u	bess-um	bess-um	pess-um

\rightarrow Floating i has a concrete, visible reflex in the RDem paradigm.
BUT we can still not be certain if F.NOM.SG / N.NOM/ACC.PL K - \varnothing is internal or external since both options surface as pessi
(28) $\begin{array}{lll}p a-\varnothing-\overline{s i} \\ p a-s s^{i}-\varnothing & > & p e s s i \\ & & \end{array}$

But what about M.NOM.SG $-r$?
> Floating \boldsymbol{i} apparently surfaces before \boldsymbol{r}
(29) $2 / 3 . \mathrm{SG}$ dōm ${ }^{i}-r$
$>\quad$ domir

More precisely

Floating i is syncopated in medial open syllable (but surfaces in closed syllable)

Johnsen (2012): Proto-Norse ${ }^{*} i$ goes to zero in ON in medial open syllable
This historical rule is sychronically relevant for ON, e.g. in the paradigm for dróttin- 'ruler'
(30) $i>\emptyset$ in medial open syllable
dróttin- 'ruler' (Johnsen 2012: 42)
(a) no i-syncope

NOM.SG	dróttin-r	$>$	drót.tinn ${ }^{12}$
ACC.SG	dróttin-Ø	$>$	drót.tin
GEN.SG	dróttin-s	$>$	drót.tins

(b) i-syncope

DAT.SG	dróttin-i	$>$	drót.ti.ni	$>$	dróttni
NOM.PL	dróttin-ar	$>$	drót.ti.nar	$>$	dróttnar
GEN.PL	dróttin-a	$>$	drót.ti.na	$>$	dróttna

Accounts for the deletion of floating i in the RDem forms with r-initial endings:
(31) RDem with r-initial K
i-syncope

F.GEN.SG	bess-rirar	>	pes.si.rar	>	pessfar	>	pessar
F.DAT.S	pessi-ri	>	pes.si.ri	$>$	pessfi	>	pessi
GEN.PL	pess ${ }^{\text {i }}$-ra	>	pes.sti.ra	>	pessfa	>	pessa

(32) Floating i deletes in forms with r-initial K

	F.SG	M.SG	N.SG	F.PL	M.PL	N.PL
NOM	pessi	pessi	bett- a	bess-ar	bess-ir	pessi
ACC	pess-a	penn- a	pett- a	bess-ar	bess-a	bessi
GEN	pess-ar	pess- a	pess- a	pess-a	bess-a	pess-a
DAT	pess-i	pess-um	pess-u	bess-um	bess-um	pess-um

So floating i surfaces in doemir because it is in a closed syllable: dœem.ir
\rightarrow Testing ground for the position of inflection in M.NOM.SG pessi, which should involve inflectional - r

TEST

> If K ending $-r$ is external...
(33) (a) pe-ss ${ }^{i}-r>$ pes.sir \quad [closed syllable \rightarrow no syncope] $>\quad$ *pessir
(b) cf. $2 / 3 . \mathrm{SG}$ doxm ${ }^{i}-r>d x . m i r$

Incorrect form *pessir surfaces ${ }^{13}$
> If K ending $-\boldsymbol{r}$ is internal...
(34) (a) pe-r-ssi $>$ pesssi pessi
(b) cf. verb forms with passive/middle $-s k$
finnr-sk $>$ finnss $k>$ finnsk 'is found '
getr-sk $>$ getssk $>$ getsk $<$ gezk $>$ 'is begotten' (Barnes 2004: 144)
$\xrightarrow[r s>s s]{\text { RULES }}$
$r s>s s$
$\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{2}>\mathrm{C}_{1} \mathrm{C}_{2}$ (Barnes 2004: 101)

Correct form pessi surfaces

Attested form is pessi and not * bessir \rightarrow M.NOM.SG pessi has internal inflection

I assume all the bolded forms have internal inflection:
(35) $\begin{array}{lll}\text { pa- } & -\varnothing & -\mathrm{ss}^{\mathrm{i}} \\ & \text { pa- } & -\mathrm{r} \\ & -\mathrm{ss}^{\mathrm{i}} \\ & \mathrm{D} & \mathrm{K} \\ & \mathrm{R}\end{array}$
> Supporting evidence from West Gmc for internal inflection in the bolded forms
Old English, Old Frisian, and Old Saxon overtly show internal inflection in the relevant forms:
(36) Comparative evidence for internal inflection
(a) F.NOM.SG

OE	$b-\bar{e} o-s$	$\left(\mathrm{~K}_{\text {Dem }}<\operatorname{Dem} s-\bar{e} o\right)$
OF/OS	$t h-i u-s$	$\left(\mathrm{~K}_{\text {Dem }}<\operatorname{Dem} t h-i u\right)$

(b) M.NOM.SG

OE $\quad b-e(:)-s \quad\left(\mathrm{~K}_{\text {Dem }}<\operatorname{Dem} s-e(:)\right)$
(c) NOM/ACC.PL (NB: not just the neuter)

OE $\quad b-\bar{a}-s \quad\left(\mathrm{~K}_{\text {Dem }}<\operatorname{Dem} p-\bar{a}\right)$
3.4. Refining the templates
(37) Three descriptive templates
(i) pa- -ss ${ }^{1} \quad-\mathrm{K}$
[boxed]
(ii) pa- $-\mathrm{KK}^{1}-\mathrm{a}$
[italicized]
(iii) pa- -K -ss
[bolded]

As a final refinement, we can separate out consonant gemination in each template:

(38)	(i)	pa-	-s	$-\mathrm{C}^{\mathrm{i}}$	-K	[boxed]
	(ii)	pa-	-K	$-\mathrm{C}^{\mathrm{i}}$	-a	
	(iii)	pa-	-K	-s	C^{i}	$[$ italicized]
	bolded]					

16

- Exceptionally regular RDem paradigm: each and every form in the ON RDem paradigm has a template with four distinct slots.
- Morphemes $-s$ and $-a$ never cooccur within the same RDem form. They are in perfect complementary distribution and can be considered two realizations of the same syntactic head.

4. A Cinquean approach

4.1. The U20 program

Cinque (2005) on the order of N, A, Num, Dem across languages:

- 14 attested orders
- 10 unattested orders (taken to be impossible)

Rules to derive the 14 possible orders but also rule out the 10 impossible ones:

- XP movement only (no head movement)
- XPs that move must contain the head noun
- Leftward movement only (antisymmetry, Kayne 1994)
4.2. Deducing the fseq of RDem

Four basic ingredients in RDem
(39) $p a-$
D
adjectival endings in (15)
K
$-C^{i}$
R_{1}
complementary $-s /-a$
R_{2}
' R ' for reinforcer (but not the adverbial locative reinforcer of Bernstein 1997) ${ }^{14}$
(40) Cinque (2005) RDem
$\begin{array}{ll}\mathrm{N} & \mathrm{D} \\ \text { A } & \mathrm{K} \\ \text { Num } & \mathrm{R}_{1}\end{array}$
Dem
R_{1}
R_{2}
Just as in Cinque's work, there are 24 possible combinations of $\mathrm{D}, \mathrm{K}, \mathrm{R}_{1}$, and $\mathrm{R}_{2}(4!=4 \cdot 3 \cdot 2 \cdot 1=24)$.
$\rightarrow 24$ possible base-generated functional sequences for RDem
(41) 24 possible RDem fseqs

(a)	$\mathrm{R}_{2} \mathrm{R}_{1} \mathrm{~K}$ D	=	$-\mathrm{s} / \mathrm{a}+\mathrm{C}^{\text {i }}+-\mathrm{K}+\mathrm{pa}-$
(b)	$\mathrm{R}_{2} \mathrm{R}_{1} \mathrm{D}$ K	=	-s/-a + - $\mathrm{C}^{\text {i }}+\mathrm{pa}-+-\mathrm{K}$
(c)	$\mathrm{R}_{2} \mathrm{DR}_{1} \mathrm{~K}$	=	-s/-a + pa-+-C ${ }^{\text {i }}+-\mathrm{K}$
(d)	D $\mathrm{R}_{2} \mathrm{R}_{1} \mathrm{~K}$	=	pa- $+-\mathrm{s} /-\mathrm{a}+-\mathrm{C}^{\text {i }}+-\mathrm{K}$
(e)	$\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{~K}$ D	=	$-\mathrm{C}^{\mathrm{i}}+-\mathrm{s} /-\mathrm{a}+-\mathrm{K}+\mathrm{pa}$
(f)	$\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{D}$ K	=	$-\mathrm{C}^{\mathrm{i}}+-\mathrm{s} /-\mathrm{a}+\mathrm{pa}-+-\mathrm{K}$
(g)	$\mathrm{R}_{1} \mathrm{DR}_{2} \mathrm{~K}$	=	$-\mathrm{C}^{\mathrm{i}}+\mathrm{pa}-+-\mathrm{s} /-\mathrm{a}+-\mathrm{K}$
(h)	D $\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{~K}$	=	pa- + - $\mathrm{C}^{\text {i }}+\mathrm{s} /-\mathrm{a}+-\mathrm{K}$
(i)	$\mathrm{K} \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{D}$	=	$-\mathrm{K}+-\mathrm{s} /-\mathrm{a}+\mathrm{C}^{\text {i }}+\mathrm{pa}-$
(j)	$\mathrm{K} \mathrm{R}_{2} \mathrm{D} \mathrm{R}_{1}$	=	$-\mathrm{K}+-\mathrm{s} /-\mathrm{a}+\mathrm{pa}-+-\mathrm{C}^{\text {i }}$
(k)	K D R $2_{2} \mathrm{R}_{1}$	=	$-\mathrm{K}+\mathrm{pa}-+-\mathrm{s} /-\mathrm{a}+-\mathrm{C}^{\text {i }}$
(1)	D K R $\mathrm{R}_{2} \mathrm{R}_{1}$	=	pa- + - $\mathrm{K}+-\mathrm{s} /-\mathrm{a}+-\mathrm{C}^{\text {i }}$
(m)	$\mathrm{R}_{2} \mathrm{~K} \mathrm{R}_{1} \mathrm{D}$	=	$-\mathrm{s} /-\mathrm{a}+-\mathrm{K}+-\mathrm{C}^{\text {i }}+\mathrm{pa}-$
(n)	$\mathrm{R}_{2} \mathrm{~K} \mathrm{D} \mathrm{R} \mathrm{l}_{1}$	=	$-\mathrm{s} / \mathrm{-a}+-\mathrm{K}+\mathrm{pa}-+-\mathrm{C}^{\text {i }}$
(o)	$\mathrm{R}_{2} \mathrm{D} K \mathrm{R}_{1}$	=	$-\mathrm{s} / \mathrm{a}+\mathrm{pa}-+-\mathrm{K}+-\mathrm{C}^{\text {i }}$
(p)	D $\mathrm{R}_{2} \mathrm{~K} \mathrm{R}_{1}$	=	pa- $+-\mathrm{s} /-\mathrm{a}+-\mathrm{K}+-\mathrm{C}^{\text {i }}$
(q)	$\mathrm{R}_{1} \mathrm{~K} \mathrm{R}_{2} \mathrm{D}$	=	$-\mathrm{C}^{\mathrm{i}}+-\mathrm{K}+-\mathrm{s} /-\mathrm{a}+\mathrm{pa}-$
(r)	$\mathrm{R}_{1} \mathrm{~K} \mathrm{DR}_{2}$	=	$-\mathrm{C}^{\mathrm{i}}+-\mathrm{K}+\mathrm{pa}-+-\mathrm{s} /-\mathrm{a}$
(s)	$\mathrm{R}_{1} \mathrm{DKRR}_{2}$	=	$-\mathrm{C}^{\mathrm{i}}+\mathrm{pa}-+-\mathrm{K}+-\mathrm{s} /-\mathrm{a}$
(t)	D $\mathrm{R}_{1} \mathrm{~K} \mathrm{R}_{2}$	=	pa- + - $\mathrm{C}^{\text {i }}+-\mathrm{K}+-\mathrm{s} /-\mathrm{a}$
(u)	K $\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{D}$	=	$-\mathrm{K}+-\mathrm{C}^{\text {i }}+-\mathrm{s} /-\mathrm{a}+\mathrm{pa}-$
(v)	K $\mathrm{R}_{1} \mathrm{D} \mathrm{R}_{2}$	=	$-\mathrm{K}+-\mathrm{C}^{\mathrm{i}}+\mathrm{pa}-+-\mathrm{s} /-\mathrm{a}$
(w)	K D R1 R_{2}	=	$-\mathrm{K}+\mathrm{pa}-+-\mathrm{C}^{\text {i }}+$-s/-a
(x)	D K R $\mathrm{R}_{1} \mathrm{R}_{2}$	=	pa- $+-\mathrm{K}+-\mathrm{C}^{\text {i }}+$-s/-a

[indices correspond to those in Cinque (2005), given that $\mathrm{R}_{2}=$ Dem, $\mathrm{R}_{1}=$ Num, $\mathrm{K}=\mathrm{A}, \mathrm{D}=\mathrm{N}$]
We need tests to narrow down these possibilities.
In the wider context of my research (Lander in prep.), my analysis is ultimately nanosyntactic. Thus some of the tests presented here are nanosyntactically flavored.

TESTS

> Correct fseq must be able to derive the three templates from section $\mathbf{3}$ by $\mathbf{U 2 0}$ rules
(42) Three templates
(i) $\quad \mathrm{D}-\mathrm{R}_{2}-\mathrm{R}_{1}-\mathrm{K}=$ pa-s-C ${ }^{\mathrm{i}}-\mathrm{K} \Rightarrow$ pessum, pessu, pessir, etc. [boxed]
(ii) D-K-R $-\mathrm{R}_{2}=$ pa-K-C $\mathrm{C}^{\mathrm{i}}-\mathrm{a} \Rightarrow$ penna, petta, pessa [italicized]
(iii) D-K-R ${ }_{2}-\mathrm{R}_{1}=$ pa-K-s-C ${ }^{\mathrm{i}} \Rightarrow$ pessi $[$ bolded]

For example, the fseq in (43a) fails to derive template (i)
(43) (a) $\mathrm{R}_{2} \mathrm{R}_{1} \mathrm{D} \mathrm{K} \mathrm{(N)} \quad=\quad-\mathrm{s} /-\mathrm{a}+-\mathrm{C}^{\mathrm{i}}+\mathrm{pa}-+-\mathrm{K}$
(b) $\quad \mathrm{D}-\mathrm{R}_{2}-\mathrm{R}_{1}-\mathrm{K} \quad=\quad \mathrm{pa}-\mathrm{s}-\mathrm{C}^{\mathrm{i}}-\mathrm{K}$

- Have to raise DP all the way up in order to get (43b)
- This means moving a constituent composed of D and N only (leaving K at the bottom)

Impossible: (35a) merges K in between D and N , so there can never be a constituent composed of D and N to the exclusion of K

> Correct fseq must merge D and K adjacently

We want to be able to build a constituent made up of D and K only

- Neutral demonstrative from the earlier Dem-si stage is an autonomous object, which may or may not be augmented by $-s i$
- From the perspective of nanosyntax, we need a [D K] constituent in order for certain irregular forms to be spelled out.

Dem forms m.NOM.SG sá and f.NOM.SG sú are irregular: we expect something like *pa-r and *pa-u (unattested/impossible)

In other words, whenever * $b a-r$ and ${ }^{*} b a-u$ are built, they need to be replaced by sá and $s u$
(44) Phonological idioms ${ }^{15}$
(a) Regular entries

$$
\begin{aligned}
& <_{346} \mathrm{DP} \Leftrightarrow p a-> \\
& <_{1249} \mathrm{~K}_{\mathrm{F} . \mathrm{NOM.SG}} \mathrm{P} \Leftrightarrow-u> \\
& <_{1250} \mathrm{~K}_{\text {M.NOM.SG }} \mathrm{P} \Leftrightarrow-r>
\end{aligned}
$$

(b) Pointer entries

$$
\begin{aligned}
& <_{2386}[[346] 1249] \Leftrightarrow s \bar{u}> \\
& <_{2387}[[346] 1250] \Leftrightarrow s \bar{a}>
\end{aligned}
$$

Same idea as:

- *bring-ed \rightarrow brought (Starke 2011b)
- *we's \rightarrow our

$>$ Correct fseq must merge K and R_{1} adjacently

Again, $\mathrm{R}_{1}=$ consonant geminator in ON
Old English RDem shows -s- (non-shaded) ~ -ss- (shaded)
(45) OE RDem

	F.SG	M.SG	N.SG	F.PL	M.PL	N.PL
NOM	b-ēo-s	p-e(:)-s	pi-s	p-ā-s	p-ā-s	p-ā-s
ACC	p-ā-s	pi-s-ne	pi-s	p-ā-s	p-ā-s	p-ā-s
GEN	pi-s-re > pisse	pi-s-s-es	pi-s-s-es	$\begin{aligned} & \begin{array}{l} \text { pi-s-ra }> \\ \text { pissa } \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { pi-s-ra }> \\ \text { pissa } \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { pi-s-ra }> \\ \text { pissa } \end{array} \\ & \hline \end{aligned}$
DAT	pi-s-re > bisse	pi-s-s-um	pi-s-s-um	pi-s-s-um	pi-s-s-um	pi-s-s-um

(Campbell 2003: 291)

- Geminated / shaded forms can be thought of as:
(46) (a) $p i-s-C-K \quad=\quad D-\mathrm{R}_{2}-\mathrm{R}_{1}-\mathrm{K}$
(b) = ON boxed forms / template (i)
- In the non-shaded forms we see suppression of gemination
\Rightarrow Geminator R_{1} is packaged and spelled out along with another ingredient
Only ingredient, moreover, that can track [\pm gemination] in the paradigm is K (i.e. D $p i$ - and $\mathrm{R}_{2}-s$ do not vary intraparadigmatically, while K does)
(47) (a) $<\mathrm{K}_{\text {M.GEN.SG }} \mathrm{P} \Leftrightarrow$-es $>$
\Rightarrow leaves R_{1} free to be expressed as $-C$
pi-s-C-es > M.GEN.SG pisses
(b)
$-\mathbf{R}_{\mathbf{1}} \mathbf{P} \mathrm{K}_{\mathrm{M} . \mathrm{ACC}}$
$<\mathrm{K}_{\mathrm{M} . \mathrm{AcC.SG}} \mathrm{P} \mathbf{R}_{\mathbf{1}} \mathbf{P} \Leftrightarrow-n e>$
\Rightarrow gemination is suppressed due to $K+R_{1}$ packaging
pi-s-ne > M.ACC.SG pisne

OE shows us that we need a constituent made up of K and R_{1} only \rightarrow fseq must merge them adjacently

- Correct fseq should be compatible with a decomposed K domain.

Caha (2009) decomposes K domain into multiple features:
(48) DAT $=\mathrm{K}_{4} \mathrm{~K}_{3} \mathrm{~K}_{2} \mathrm{~K}_{1}$

$$
\begin{array}{rlr}
\text { DA1 } & \mathrm{N}_{4} \mathbf{N}_{3} \mathbf{N}_{2} \mathrm{~N}_{1} \\
\text { GEN } & = & \mathrm{K}_{3} \mathrm{~K}_{2} \mathrm{~K}_{1} \\
\text { ACC } & = & \mathrm{K}_{2} \mathrm{~K}_{1} \\
\text { NOM } & = & \mathrm{K}_{1}
\end{array}
$$

In addition to deriving all the templates, the correct fseq should be able to keep K features as a syntactic object to the exclusion of other features.

For example:
(49) $\quad \mathrm{K} \mathrm{R}_{1} \mathrm{R}_{2} \mathrm{D}$

For template (ii) (D-K-R $-\mathrm{R}_{2}$), move DP all the way up
(50) DP KP $t_{\mathrm{DP}} \mathrm{R}_{1} \mathrm{P} t_{\mathrm{DP}} \mathrm{R}_{2} \mathrm{P} t_{\mathrm{DP}}$

Achieves basic order of template (ii), but constituency problem for K:
M/N.GEN.SG pessa requires $\mathrm{K}_{3}, \mathrm{~K}_{2}$, and K_{1} for the genitive morpheme -s
BUT:
(51) No phrase containing only K features, to the exclusion of R features ${ }^{16}$

\Rightarrow constituent-based spellout cannot target the case ending alone
\rightarrow Fseq (49) can be considered incompatible with decomposed K domain

Summarizing:

TESTS

The correct fseq must:

- Be able to derive all three ON templates by Cinque's (2005) U20 rules
(i) $\mathrm{D}-\mathrm{R}_{2}-\mathrm{R}_{1}-\mathrm{K}=$ pa-s-C $\mathrm{C}^{\mathrm{i}}-\mathrm{K}$
$\begin{array}{ll}\text { (ii) } & \mathrm{D}-\mathrm{K}-\mathrm{R}_{1}-\mathrm{R}_{2}=\text { ba-K-C }{ }^{\mathrm{i}} \text { - } \\ \text { (iii) } \\ \mathrm{D}-\mathrm{K}-\mathrm{R}_{2}-\mathrm{R}_{1} & = \\ \text { pa-K-s-C }\end{array}$
- Have D and K adjacent so that Dem can be a constituent (DK)
- Have K and R_{1} adjacent so that gemination can be suppressed in $\mathrm{OE}\left(\mathbf{K R}_{\mathbf{1}}\right)$
- Not have constituency problems for multiple K features (Caha 2009) (K)

(52) Testing the 24 possible base-generated orders

KEY

* $=$ failed test
(subex.) = requires subextraction of NP (possible in Cinque's system but not ideal ${ }^{17}$) KP constituency test is given after the template
(a) $\quad \mathbf{R}_{2} \mathbf{R}_{1} K D=\quad-s /-a+-C^{i}+-K+p a$

pa-s-Ci-K / K
 pa-K-Ci-a / K
 pa-K-s-C ${ }^{i} / \mathbf{K}$
 DK

K_{1}
(b) $\quad \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{DK}=\quad=-\mathrm{s} /-\mathrm{a}+-\mathrm{C}^{\mathrm{i}}+\mathrm{pa}-+-\mathrm{K}$
*pa-s-Ci ${ }^{\text {i }}$ K
pa-K-Ci-a/K
pa-K-s-Ci / K
DK
${ }^{*} \mathrm{KR}_{1}$
(c) $\quad \mathrm{R}_{2} \mathrm{DR}_{1} \mathrm{~K}=-\mathrm{s} /-\mathrm{a}+\mathrm{pa}-+-\mathrm{C}^{\mathrm{i}}+-\mathrm{K}$
*pa-s-Ci-K
pa-K-Ci-a / K
${ }^{*} \mathrm{ba} \mathrm{K}$ K-s-C ${ }^{\mathrm{i}}$
*DK
KR_{1}

21
(d) $\quad \mathrm{DR}_{2} \mathrm{R}_{1} \mathrm{~K}=\mathrm{pa}-+-\mathrm{s} /-\mathrm{a}+-\mathrm{C}^{\mathrm{i}}+-\mathrm{K}$
pa-s-Ci-K / K
pa-K-Ci-a / K
pa-K-s-C ${ }^{\text {i }} / \mathrm{K}$
*DK
KR_{1}
(e) $\quad \mathrm{R}_{1} \mathrm{R}_{2}$ K D $=\quad-\mathrm{C}^{\mathrm{i}}+-\mathrm{s} /-\mathrm{a}+-\mathrm{K}+\mathrm{pa}-$
*pa-s-Ci ${ }^{\text {i }}$ K
pa-K-Ci-a / K
pa-K-s-C ${ }^{i} / \mathrm{K}$
DK
*KR
(f) $\quad \mathrm{R}_{1} \mathrm{R}_{2} D \mathrm{~K}=-\mathrm{C}^{1}+-\mathrm{s} /-\mathrm{a}+\mathrm{pa}-+-\mathrm{K}$
*ba-s-C ${ }^{1}-\mathrm{K}$
pa-K-Ci-a / K
pa-K-s-C ${ }^{i} / \mathrm{K}$
DK
*KR
(g) $\quad \mathrm{R}_{1} D \mathrm{R}_{2} \mathrm{~K}=\quad-\mathrm{C}^{\mathrm{i}}+\mathrm{pa}-+-\mathrm{s} /-\mathrm{a}+-\mathrm{K}$
*ba-s-Ci-K
pa-K-s-C ${ }^{\mathrm{i}} / \mathrm{K}$
*DK
*KR
(h) $\quad D R_{1} R_{2} K=p a-+-C^{i}+-s /-a+-K$
*pa-s-C ${ }^{\text {i }}-\mathrm{K}$
pa-K-Ci-a / K
pa-K-s-C ${ }^{\text {i }} / \mathrm{K}$
*DK
*KR
(i) $\quad \mathrm{KR}_{2} \mathrm{R}_{1} \mathrm{D}=\quad-\mathrm{K}+-\mathrm{s} /-\mathrm{a}+-\mathrm{C}^{\mathrm{i}}+$ pa-
pa-s-Ci-K / K
?? pa-K-Ci-a (subex.) / *K
pa-K-s-C ${ }^{\text {i }} / * \mathrm{~K}$
*DK
*KR
(j) $\quad \mathrm{K} \mathrm{R}_{2} \mathrm{DR}_{1}=\quad-\mathrm{K}+-\mathrm{s} /-\mathrm{a}+\mathrm{pa}-+-\mathrm{C}^{1}$
*pa-s-C ${ }^{1}-\mathrm{K}$
*ba-K-Ci-a
*pa-K-s-C ${ }^{\text {i }}$
*DK
${ }^{*} \mathrm{KR}_{1}$
(k) $\quad \mathrm{KDRR}_{2} \mathrm{R}_{1}=\quad-\mathrm{K}+\mathrm{pa}-+-\mathrm{s} /-\mathrm{a}+-\mathrm{C}^{\mathrm{i}}$
pa-s-C-K $/ \mathrm{K}$
*pa-K-C ${ }^{\text {i }}$-a
*pa-K-s-C ${ }^{\text {i }}$
DK
${ }^{*} \mathrm{KR}_{1}$
(1) $\mathrm{D} \mathrm{K} \mathrm{R}_{2} \mathrm{R}_{1}=$ pa- $+-\mathrm{K}+-\mathrm{s} /-\mathrm{a}+-\mathrm{C}^{\mathrm{i}}$
pa-s-C C^{i}-K / K
pa-K-Ci-a / *K
pa-K-s-C ${ }^{i} / * K$
DK
${ }^{*} \mathrm{KR}_{1}$
(m) $\quad \mathrm{R}_{2} \mathrm{KR}_{1} \mathrm{D}=-\mathrm{s} /-\mathrm{a}+-\mathrm{K}+-\mathrm{C}^{\mathrm{i}}+\mathrm{pa}-$
?? pa-s-Cㄹㄹ (subex.) / K
pa-K-C ${ }^{\mathrm{i}}-\mathrm{a} /{ }^{\text {i }}$ K
*pa-K-s-C ${ }^{\text {i }}$
*DK
KR_{1}
(n) $\quad \mathrm{R}_{2} \mathrm{KDDR}_{1}=\quad-\mathrm{s} /-\mathrm{a}+-\mathrm{K}+\mathrm{pa}-+-\mathrm{C}^{\mathrm{i}}$
*pa-s-C ${ }^{\text {in }}$ K
*pa-K-C ${ }^{\text {i }}$-a
*ba-K-s-C ${ }^{\text {i }}$
DK
${ }^{*} \mathrm{KR}_{1}$
(o) $\quad \mathrm{R}_{2} \mathrm{DKR}_{1}=-\mathrm{s} /-\mathrm{a}+\mathrm{pa}-+-\mathrm{K}+-\mathrm{C}^{\mathrm{i}}$
*pa-s-C ${ }^{\text {i}}-\mathrm{K}$
pa-K-Ci-a $/ * K$
${ }^{*}$ pa-K-s-C ${ }^{\text {i }}$
DK
KR_{1}

23
(p) $\quad \mathrm{DR}_{2} \mathrm{KR}_{1}=$ pa- $+-\mathrm{s} /-\mathrm{a}+-\mathrm{K}+-\mathrm{C}^{\mathrm{i}}$
pa-s-Ci-K / K
pa-K-Ci-a/ *K
*pa-K-s-C ${ }^{\text {i }}$
*DK
KR_{1}
(q) $\quad \mathrm{R}_{1} \mathrm{~K}_{2} \mathrm{D}=\quad=\mathrm{C}^{\mathrm{i}}+-\mathrm{K}+-\mathrm{s} /-\mathrm{a}+\mathrm{pa}-$
pa-s-C ${ }^{\text {i }}-\mathrm{K} / \mathrm{K}$
*pa-K-C ${ }^{\mathrm{i}}-\mathrm{a}$
pa-K-s-C ${ }^{\text {i }} / * \mathrm{~K}$
*DK
KR_{1}
(r) $\quad \mathrm{R}_{1} \mathrm{KD} \mathrm{R}_{2} \quad=\quad-\mathrm{C}^{\mathrm{i}}+-\mathrm{K}+\mathrm{pa}-+-\mathrm{s} /-\mathrm{a}$
pa-s-C $\mathrm{C}^{\mathrm{i}}-\mathrm{K} / \mathrm{K}$
*ba-K-Ci-a
*ba-K-s-C
DK
KR_{1}
$\mathrm{R}_{1} \mathrm{DKRR}_{2}=\quad-\mathrm{C}^{\mathrm{i}}+\mathrm{pa}-+-\mathrm{K}+-\mathrm{s} /-\mathrm{a}$
pa-s-C ${ }^{\text {² }}$ - $/{ }^{*} \mathrm{~K}$
*ba-K-C ${ }^{\mathrm{i}}$-a
pa-K-s-C ${ }^{\text {i }} /$ *K
DK
*KR
(t) $\quad \mathrm{DR}_{1} K \mathrm{R}_{2}=$ pa- $+-\mathrm{C}^{\mathrm{i}}+-\mathrm{K}+-\mathrm{s} /-\mathrm{a}$
pa-s-C ${ }^{i}-\mathrm{K} / \mathrm{K}$
*ba-K-C ${ }^{\mathrm{i}}$-a
pa-K-s-C ${ }^{\text {i }} / * \mathrm{~K}$
*DK
KR_{1}
(u) $\quad \mathrm{KR}_{1} \mathrm{R}_{2} \mathrm{D}=-\mathrm{K}+-\mathrm{C}^{\mathrm{i}}+-\mathrm{s} /-\mathrm{a}+\mathrm{pa}-$
pa-s-Ci-K / K
pa-K-Ci-a $/ * K$
?? pa-K-s-C ${ }^{\mathrm{i}}$ (subex.) / *K
*DK
KR_{1}
(v) $\quad \mathrm{KR}_{1} D \mathrm{R}_{2} \quad=\quad-\mathrm{K}+-\mathrm{C}^{\mathrm{i}}+$ pa- $+-\mathrm{s} /$-a
pa-s-C ${ }^{\mathrm{i}}-\mathrm{K} / \mathrm{K}$
*pa-K-C ${ }^{\text {i }}$ -
*ba-K-s-C ${ }^{\text {i }}$
*DK
K_{1}
(w) $\quad \mathrm{KDR}_{1} \mathrm{R}_{2}=\quad-\mathrm{K}+\mathrm{pa}-+-\mathrm{C}^{\mathrm{i}}+-\mathrm{s} /-\mathrm{a}$
pa-s-Ci-K / K
*pa-K-C ${ }^{\text {i }}$-a
*pa-K-s-C ${ }^{\text {i }}$
DK
${ }^{*} \mathrm{KR}_{1}$
(x) $\quad \mathrm{DKR}_{1} \mathrm{R}_{2}=\quad \mathrm{pa}-+-\mathrm{K}+-\mathrm{C}^{\mathrm{i}}+-\mathrm{s} /-\mathrm{a}$
pa-s-C-K / K
pa-K-Ci-a $/ * K$
pa-K-s-C ${ }^{\text {i }} /$ *K $^{\text {K }}$
DK
KR

RESULT: Fseq (a) is the sole survivor; all other fseqs fail one or more tests ${ }^{18}$
4.3. Derivations
(53) Fseq: $\mathrm{R}_{2} \mathrm{R}_{1} \mathrm{~K} \mathrm{D}$
$\left[\begin{array}{llllllll}{[\mathrm{R} 2 \mathrm{P}} & -S /-a & {[\mathrm{RIP}} & -C^{i} & {[\mathrm{KP}} & -\mathrm{K} & \left.\left[\begin{array}{lll}\mathrm{DP} & p a- &]\end{array}\right]\right]\end{array}\right]$

U20 derivation				
$\mathrm{DP} \mathrm{R}_{2} \mathrm{P} t_{\mathrm{DP}} \mathrm{R}_{1} \mathrm{P} t_{\mathrm{DP}} \mathrm{KP} t_{\mathrm{DP}}$	'fully cyclic'	=>	(i)	pa-s-C ${ }^{\text {i }}$-K [boxed]
[DP KP $\left.t_{\mathrm{DP}}\right]_{\mathrm{i}} \mathrm{R}_{2} \mathrm{P} t_{\mathrm{i}} \mathrm{R}_{1} \mathrm{P} t_{\mathrm{i}}$	'partially cyclic'	=>	(iii)	pa-K-s-C ${ }^{\text {i }}$ [bolded]
$\left[\left[\mathrm{DP} \mathrm{KP} t_{\mathrm{DP}}\right]_{\mathrm{i}} \mathrm{R}_{1} \mathrm{P} t_{\mathrm{i}}\right]_{\mathrm{j}} \mathrm{R}_{2} \mathrm{P} t_{\mathrm{j}}$	'roll-up'	=>	(ii)	pa-K-C ${ }^{\text {i }}$ - [italicized]

(54) Fully cyclic derivation
M.DAT.SG pa-s-Ci-um
pessum

(55) Partially cyclic derivation
F.NOM.SG/N.NOM/ACC.PL pa-Ø-s-C ${ }^{\mathrm{i}} \quad>\quad$ pessi

(56) Roll-up derivation
N.NOM/ACC.SG pa-t-Ci ${ }^{\mathrm{i}} \mathrm{a}>\quad$ betta

$>\mathrm{R}_{2}$ is lexicalized as $-a$ only in the roll-up derivation and as $-s$ if cyclic movement is involved.
> Two main types of derivations in the ON RDem paradigm: roll-up and cyclic
(57) Different derivations in RDem

	F.SG	M.SG	N.SG	F.PL	M.PL	N.PL
NOM	pessi	pessi	betta	pessar	pessir	pessi
ACC	pessa	penna	petta	bessar	bessa	pessi
GEN	pessar	pessa	pessa	pessa	pessa	pessa
DAT	pessi	pessum	pessu	pessum	pessum	pessum

$$
\text { Roll-up }=\text { italicized }[- \text { cyclic }]
$$

Fully cyclic = boxed

$$
\begin{aligned}
& \text { Fully cyclic }=\text { boxed } \\
& \text { Partially cyclic }=\text { bolded }
\end{aligned}
$$

$$
\}[+ \text { cyclic }]
$$

[^2]27
4.4. Converging evidence for $[\pm$ cyclic $]$ in modern Icelandic
(58) Modern Icelandic RDem

	F.SG	M.SG	N.SG	F.PL	M.PL	N.PL
NOM	pessi	pessi	petta(-ð)	pessar	pessir	pessi
ACC	pessa	penna-n	petta(-ð)	pessar	pessa	pessi
GEN	bessarar	pessa(${ }^{\circ}$-ss)	pessa(${ }^{\circ}$-s)	bessara	bessara	bessara
DAT	bessari	pessum	pessu	pessum	pessum	pessum

$\%=$ children and adolescents (Axelsdóttir 2003: 60)

Very similar to the ON RDem paradigm, except for two things:
> Less interesting: boxed forms with r-initial endings have new stem (bessa-), allowing r to surface
> More interesting: the roll-up forms - but only the roll-up forms - show (the possibility of) an extra K marker

$(59)^{19}$	M.ACC.SG	pe-n-C-a-n
	M/N.GEN.SG	pe-s-C-a-s
	N.NOM/ACC.SG	pe-t-C-a- \mathbf{d}^{20}

That is, [-cyclic] forms are - as a class - undergoing a change in modern Icelandic, while [+ cyclic] forms are more or less the same as in ON
4.5. Why there are only three structures
> (41) showed the 24 possible base-generated orders for RDem

- We determined that (a) was the correct base-generated order, but there are still (in principle) 24 possible structures that can be derived from this underlying sequence. These structures are given in (60).
(60) 24 possible RDem structures (where base order is $\mathrm{R}_{2} \mathrm{R}_{1} \mathrm{~K} \mathrm{D}$)

(a)	$\mathrm{R}_{2} \mathrm{R}_{1} \mathrm{~K} \mathrm{D}$	=	$-\mathrm{s} /-\mathrm{a}+-\mathrm{C}^{\mathrm{i}}+-\mathrm{K}+\mathrm{pa}-$
(b)	$\mathrm{R}_{2} \mathrm{R}_{1} \mathrm{D}$ K	=	$-\mathrm{s} /-\mathrm{a}+-\mathrm{C}^{\mathrm{i}}+\mathrm{pa}-+-\mathrm{K}$
(c)	$\mathrm{R}_{2} \mathrm{DR}_{1} \mathrm{~K}$		$-\mathrm{s} / \mathrm{a}+\mathrm{pa}++-\mathrm{C}^{\text {i }}+-\mathrm{K}$
(d)	D $\mathrm{R}_{2} \mathrm{R}_{1} \mathrm{~K}$		pa- $+-\mathbf{s} / \mathbf{- a}+-\mathrm{C}^{\mathbf{i}}+-\mathrm{K}$
(e)	$\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{~K} \mathrm{D}$		$-\mathrm{C}^{\text {i }}+-\mathrm{s} /-\mathrm{a}+-\mathrm{K}+\mathrm{pa}-$
(f)	$\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{D}$ K		$-\mathrm{C}^{\mathrm{i}}+-\mathrm{s} /-\mathrm{a}+\mathrm{pa}-+-\mathrm{K}$
(g)	$\mathrm{R}_{1} \mathrm{D} \mathrm{R}_{2} \mathrm{~K}$		$-\mathrm{C}^{\text {i }}+\mathrm{pa}-+-\mathrm{s} /-\mathrm{a}+-\mathrm{K}$
(h)	D $\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{~K}$	=	pa- $+-\mathrm{C}^{\text {i }}+-\mathrm{s} /-\mathrm{a}+-\mathrm{K}$
(i)	K R $\mathrm{R}_{2} \mathrm{R}_{1} \mathrm{D}$	=	$-\mathrm{K}+-\mathrm{s} /-\mathrm{a}+-\mathrm{C}^{\text {i }}+\mathrm{pa}-$
(j)	$\mathrm{K} \mathrm{R}_{2} \mathrm{D} \mathrm{R}_{1}$		$-\mathrm{K}+-\mathrm{s} /-\mathrm{a}+\mathrm{pa}-+-\mathrm{C}^{\text {i }}$
(k)	K D $\mathrm{R}_{2} \mathrm{R}_{1}$	$=$	$-\mathrm{K}+\mathrm{pa}-+-\mathrm{s} /-\mathrm{a}+\mathrm{C}^{\text {i }}$
(l)	D K $\mathbf{R}_{\mathbf{2}} \mathbf{R}_{1}$	=	pa- + -K +-s/-a + - $\mathbf{C}^{\text {i }}$
(m)	$\mathrm{R}_{2} \mathrm{~K} \mathrm{R}_{1} \mathrm{D}$	=	$-\mathrm{s} /-\mathrm{a}+-\mathrm{K}+-\mathrm{C}^{\text {i }}+\mathrm{pa}-{ }^{\text {d }}$
(n)	$\mathrm{R}_{2} \mathrm{~K}$ D R_{1}	=	$-\mathrm{s} /-\mathrm{a}+-\mathrm{K}+\mathrm{pa}-+-\mathrm{C}^{\text {i }}$
(o)	$\mathrm{R}_{2} \mathrm{DK} \mathrm{R}_{1}$	=	$-\mathrm{s} / \mathrm{a}+\mathrm{pa}-+-\mathrm{K}+\mathrm{C}^{\text {i }}$
(p)	D $\mathrm{R}_{2} \mathrm{~K} \mathrm{R}_{1}$	=	pa- $+-\mathrm{s} /-\mathrm{a}+-\mathrm{K}+-\mathrm{C}^{\text {i }}$
(q)	$\mathrm{R}_{1} \mathrm{~K} \mathrm{R}_{2} \mathrm{D}$	=	$-\mathrm{C}^{\text {i }}+-\mathrm{K}+-\mathrm{s} /-\mathrm{a}+\mathrm{pa}-$
(r)	$\mathrm{R}_{1} \mathrm{KD} \mathrm{R} \mathrm{R}_{2}$	=	$-\mathrm{C}^{\mathrm{i}}+-\mathrm{K}+\mathrm{pa}-+-\mathrm{s} /-\mathrm{a}$
(s)	$\mathrm{R}_{1} \mathrm{DK} \mathrm{R}_{2}$	=	$-\mathrm{C}^{\text {i }}+\mathrm{pa}-+-\mathrm{K}+-\mathrm{s} /-\mathrm{a}$
(t)	D $\mathrm{R}_{1} \mathrm{~K} \mathrm{R}_{2}$	=	pa- + - $\mathrm{C}^{\text {i }}+-\mathrm{K}+-\mathrm{s} /-\mathrm{a}$
(u)	K $\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{D}$	=	$-\mathrm{K}+\mathrm{C}^{\text {i }}+$-s/-a + ba-
(v)	$\mathrm{K} \mathrm{R}_{1} \mathrm{D} \mathrm{R}_{2}$	=	$-\mathrm{K}+-\mathrm{C}^{\text {i }}+\mathrm{pa}-+-\mathrm{s} /-\mathrm{a}$
(w)	K D $\mathrm{R}_{1} \mathrm{R}_{2}$	=	$-\mathrm{K}+\mathrm{pa}-+-\mathrm{C}^{\mathrm{i}}+-\mathrm{s} /-\mathrm{a}$
(x)	D K $\mathrm{R}_{1} \mathrm{R}_{\mathbf{2}}$	=	pa- +-K+-Cides/-a

[boxed]

bolded]
[italicized]
[alphabetical indices have been kept the same as in (41)]

$$
\text { Only three of these }(\mathrm{d}, 1, \mathrm{x}) \text { are observed in the RDem paradigm } \rightarrow \text { Why are } 21 \text { structures ruled out? }
$$

Three constraints to narrow down (60)

```
- Syntactic (U20-derivable)
- Morphological ('unhappy suffixes')
- Phonological (C must immediately precede - \(\mathrm{C}^{\mathrm{i}}\) )
```


> Must be derivationally possible in the U20 system

10 structures are derivationally impossible (= would require head movement, remnant movement, etc.) I also assume that we do not want subextraction (see $n .17$), meaning (p) is ruled out too

29
61) (e) $* \mathrm{R}_{1} \mathrm{R}_{2} \mathrm{KD} \quad=\quad-\mathrm{C}^{1}+-\mathrm{s} /-\mathrm{a}+-\mathrm{K}+\mathrm{pa}-$ (f) ${ }^{*} \mathrm{R}_{1} \mathrm{R}_{2} \mathrm{DK}=-\mathrm{C}^{\mathrm{i}}+-\mathrm{s} /-\mathrm{a}+\mathrm{pa}-+-\mathrm{K}$ (g) ${ }^{*} \mathrm{R}_{1} \mathrm{D} \mathrm{R}_{2} \mathrm{~K}=-\mathrm{C}^{\mathrm{i}}+\mathrm{pa}-+-\mathrm{s} /-\mathrm{a}+-\mathrm{K}$ (h) $\quad \mathrm{DR}_{1} \mathrm{R}_{2} \mathrm{~K}=\quad \mathrm{pa}-+-\mathrm{C}^{\mathrm{i}}+-\mathrm{s} /-\mathrm{a}+-\mathrm{K}$ (i) $\quad \mathrm{KR}_{2} \mathrm{R}_{1} \mathrm{D}=-\mathrm{K}+-\mathrm{s} /-\mathrm{a}+-\mathrm{C}^{\mathrm{i}}+\mathrm{pa}-$ (j) $* \mathrm{KR}_{2} D \mathrm{R}_{1}=-\mathrm{K}+-\mathrm{s} /-\mathrm{a}+\mathrm{pa}-+-\mathrm{C}^{\mathrm{i}}$ (m) $* \mathrm{R}_{2} \mathrm{~K} \mathrm{R}_{1} \mathrm{D}=-\mathrm{s} /-\mathrm{a}+-\mathrm{K}+-\mathrm{C}^{\mathrm{i}}+\mathrm{pa}-$ (p) ?? $\mathrm{DR}_{2} \mathrm{~K} R_{1}=\mathrm{pa}-+-\mathrm{s} / \mathrm{a}+-\mathrm{K}+-\mathrm{C}^{\mathrm{i}}$ (q) ${ }^{*} \mathrm{R}_{1} K \mathrm{R}_{2} \mathrm{D}=-\mathrm{C}^{\mathrm{i}}+-\mathrm{K}+-\mathrm{s} /-\mathrm{a}+\mathrm{pa}-$
(u) ${ }^{*} \mathrm{~K} \mathrm{R}_{1} \mathrm{R}_{2} \mathrm{D}=-\mathrm{K}+-\mathrm{C}^{\mathrm{i}}+-\mathrm{s} /-\mathrm{a}+\mathrm{pa}-$
(v) $* \mathrm{KR}_{1} D \mathrm{R}_{2}=-\mathrm{K}+-\mathrm{C}^{\mathrm{i}}+\mathrm{sa}-+-\mathrm{s} /-\mathrm{a}$

- Suffixes must be to the right of something

Eliminating the structures in (61) $\rightarrow 13$ structures left over, all of which are U20-derivable
(62) (a) $\mathrm{R}_{2} \mathrm{R}_{1} \mathrm{KD}=-\mathrm{s} /-\mathrm{a}+-\mathrm{C}^{\mathrm{i}}+-\mathrm{K}+\mathrm{pa}-$
(b) $\mathrm{R}_{2} \mathrm{R}_{1} \mathrm{DK}=-\mathrm{s} /-\mathrm{a}+-\mathrm{C}^{\mathrm{i}}+\mathrm{pa}-+-\mathrm{K}$
(c) $\mathrm{R}_{2} \mathrm{DR}_{1} \mathrm{~K}=-\mathrm{s} /-\mathrm{a}+\mathrm{pa}-+-\mathrm{C}^{\mathrm{i}}+-\mathrm{K}$
(d) $\quad \mathrm{DR}_{2} \mathrm{R}_{1} \mathrm{~K}=\mathrm{pa}-+-\mathrm{s} /-\mathrm{a}+-\mathrm{C}^{\mathrm{i}}+-\mathrm{K}$
(k) $\mathrm{KD} \mathrm{R}_{2} \mathrm{R}_{1}=-\mathrm{K}+\mathrm{pa}-+-\mathrm{s} /-\mathrm{a}+-\mathrm{C}^{\mathrm{i}}$
(l) $\mathrm{DKRR}_{2} \mathrm{R}_{1}=\mathrm{pa}-+-\mathrm{K}+-\mathrm{s} /-\mathrm{a}+-\mathrm{C}$
(n) $\mathrm{R}_{2} \mathrm{KDR}_{1}=-\mathrm{s} /-\mathrm{a}+-\mathrm{K}+\mathrm{pa}-+-\mathrm{C}^{\mathrm{i}}$
(o) $\mathrm{R}_{2} \mathrm{DK} \mathrm{R}_{1}=-\mathrm{s} /-\mathrm{a}+\mathrm{pa}-+-\mathrm{K}+-\mathrm{C}^{\mathrm{i}}$
$\begin{array}{llll}\text { (r) } & \mathrm{R}_{1} \mathrm{KD} \mathrm{R} & =-\mathrm{C}^{2}+-\mathrm{K}+\mathrm{pa}-+-\mathrm{s} /-\mathrm{a} \\ (\mathrm{s}) & \mathrm{R}_{1} \mathrm{DK} \mathrm{R}_{2} & = & -\mathrm{C}^{\mathrm{i}}+\mathrm{pa}+-\mathrm{K}+-\mathrm{s} /-\mathrm{a}\end{array}$
(s) $\quad \mathrm{R}_{1} \mathrm{DKRR}_{2}=-\mathrm{C}^{\mathrm{i}}+\mathrm{pa}-+-\mathrm{K}+-\mathrm{s} /-\mathrm{a}$
(t) $\quad \mathrm{DR}_{1} K R_{2}=\mathrm{pa}-+-\mathrm{C}^{\mathrm{i}}+-\mathrm{K}+-\mathrm{s} /-\mathrm{a}$
$\begin{array}{lll}\text { (w) } \quad \mathrm{KDR}_{1} \mathrm{R}_{2} & =-\mathrm{K}+\mathrm{pa}+-\mathrm{C}^{\mathrm{i}}+-\mathrm{s} /-\mathrm{a} \\ \text { (x) } & \mathrm{DKR}_{1} \mathrm{R}_{2} & = \\ \mathrm{pa}-+-\mathrm{K}+-\mathrm{C}^{\mathrm{i}}+-\mathrm{s} /-\mathrm{a}\end{array}$
We are dealing with items at the 'morphological' level rather than the 'syntactic' level
Except for $p a$-, RDem ingredients are suffixes of some kind \rightarrow must be to the right of another morpheme Nine structures fail to fulfill this requirement:
63) (a) $\mathrm{R}_{2} \mathrm{R}_{1} \mathrm{KD}=-\mathrm{s} /-\mathrm{a}+-\mathrm{C}^{\mathrm{i}}+-\mathrm{K}+\mathrm{pa}-$
(b) $\quad R_{2} R_{1} D K=-s /-a+-C^{i}+p a-+-K$
$\begin{array}{lll}\text { (c) } \quad \mathrm{R}_{2} D \mathrm{R}_{1} \mathrm{~K} & =-\mathrm{s} /-\mathrm{a}+\mathrm{ba}-+-\mathrm{C}^{\mathrm{i}}+-\mathrm{K} \\ \text { (k) } & \mathrm{KDR}_{2} \mathrm{R}_{1} & =-\mathrm{K}+\mathrm{ba}-+-\mathrm{s} /-\mathrm{a}+-\mathrm{C}^{\mathrm{i}}\end{array}$
(n) $\mathrm{R}_{2} \mathrm{KDR} \mathrm{R}_{1}=-\mathrm{s} /-\mathrm{a}+-\mathrm{K}+\mathrm{pa}-+-\mathrm{C}^{\mathrm{i}}$
(o) $\mathrm{R}_{2} \mathrm{DKR}_{1}=-\mathrm{s} /-\mathrm{a}+\mathrm{pa}-+-\mathrm{K}+-\mathrm{C}^{\mathrm{i}}$
(r) $\mathrm{R}_{1} \mathrm{KDRR}_{2}=-\mathrm{C}^{\mathrm{i}}+-\mathrm{K}+\mathrm{pa}-+-\mathrm{s} /-\mathrm{a}$
(s) $\mathrm{R}_{1} \mathrm{DKR}_{2}=-\mathrm{C}^{\mathrm{i}}+\mathrm{pa}-+-\mathrm{K}+-\mathrm{s} /-\mathrm{a}$
(w) $\mathrm{KDR}_{1} \mathrm{R}_{2}=-\mathrm{K}+\mathrm{pa}-+-\mathrm{C}^{\mathrm{i}}+-\mathrm{s} /-\mathrm{a}$

Put simply, RDem must begin with $p a$ -
> Consonant geminator must be immediately preceded by consonant
\rightarrow Four structures left: (d, 1, t, x)
(t) is phonologically problematic: vowel a of $p a$ - cannot immediately precede $-C^{i}$
(64) (d) $\mathrm{D}_{2} \mathrm{R}_{1} \mathrm{~K}=\mathrm{pa}-+-\mathrm{s} /-\mathrm{a}+-\mathrm{C}^{\mathrm{i}}+-\mathrm{K}$
(l) $D K R_{2} R_{1}=p a-+-K+-s /-a+-C^{i}$
(t) $\quad \mathrm{DR}_{1} \mathrm{KR}_{2}=\mathrm{pa}-+-\mathrm{C}^{\mathrm{i}}+-\mathrm{K}+-\mathrm{s} /-\mathrm{a} \quad>\quad$ *crash at PF
(x) $\quad \mathrm{D} \mathrm{K} \mathrm{R}_{1} \mathrm{R}_{2}=$ pa- $+-\mathrm{K}+-\mathrm{C}^{\mathrm{i}}+-\mathrm{s} /-\mathrm{a}$

Summarizing:

(65) Testing the $\mathbf{2 4}$ possible RDem structures (where base order is $\mathbf{R}_{2} \mathbf{R}_{1} \mathbf{K}$ D)
(a) $\quad \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{KD}=\quad-\mathrm{s} /-\mathrm{a}+-\mathrm{C}^{\mathrm{i}}+-\mathrm{K}+\mathrm{pa}-$

U20
${ }^{*}$ suffixes
$\mathrm{C}-\mathrm{C}^{\mathrm{i}}$
(b) $\quad \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{DK}=\quad-\mathrm{s} /-\mathrm{a}+-\mathrm{C}^{\mathrm{i}}+\mathrm{pa}+-\mathrm{K}$

U20
*suffixes
C-C ${ }^{\text {i }}$
(c) $\quad \mathrm{R}_{2} \mathrm{DR}_{1} \mathrm{~K}=-\mathrm{s} /-\mathrm{a}+\mathrm{pa}-+-\mathrm{C}^{\mathrm{i}}+-\mathrm{K}$

U20
*suffixes
$*{ }^{*}-\mathrm{C}^{\mathrm{i}}$
(d) $\quad \mathbf{D} \mathbf{R}_{2} \mathbf{R}_{1} \mathbf{K}=$ pa-+-s/-a+-C $\mathbf{C}^{i}+-\mathbf{K}$

U20
${ }^{\text {suffixes }}$
(e) $\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{KD}=-\mathrm{C}^{\mathrm{i}}+-\mathrm{s} /-\mathrm{a}+-\mathrm{K}+\mathrm{pa}-$
*U20
*suffixes
${ }^{*} \mathrm{C}-\mathrm{C}^{\mathrm{i}}$

31

(n) $\quad \mathrm{R}_{2} \mathrm{KD} \mathrm{D}_{1}=\quad-\mathrm{s} /-\mathrm{a}+-\mathrm{K}+$ pa- $+-\mathrm{C}^{\mathrm{i}}$

U20
*suffixes

* ${ }^{\mathrm{C}}$ - C^{i}
(o) $\quad \mathrm{R}_{2} \mathrm{D} \mathrm{K} \mathrm{R}_{1}=\quad-\mathrm{s} /-\mathrm{a}+\mathrm{pa}-+-\mathrm{K}+-\mathrm{C}^{\mathrm{i}}$
*suffixes
C-C ${ }^{\text {i }}$
(p) $\quad \mathrm{DR}_{2} \mathrm{KR}_{1}=$ pa- $+-\mathrm{s} /-\mathrm{a}+-\mathrm{K}+-\mathrm{C}^{\mathrm{i}}$
?? U20 (subex.)
suffixes
C-C ${ }^{\text {i }}$
(q) $\quad \mathrm{R}_{1} \mathrm{~K} \mathrm{R}_{2} \mathrm{D}=-\mathrm{C}^{\mathrm{i}}+-\mathrm{K}+-\mathrm{s} /-\mathrm{a}+\mathrm{pa}-$
*U20
*suffixes
${ }^{*} \underline{C}-\mathrm{C}^{\mathrm{i}}$
(r) $\quad \mathrm{R}_{1} \mathrm{KDDR}_{2} \quad=\quad-\mathrm{C}^{\mathrm{i}}+-\mathrm{K}+\mathrm{pa}-+-\mathrm{s} /-\mathrm{a}$

U20
*suffixes

* ${ }^{\text {C-C }}{ }^{\text {i }}$
(s) $\quad \mathrm{R}_{1} \mathrm{DKR}_{2}=\quad-\mathrm{C}^{\mathrm{i}}+$ pa- $+-\mathrm{K}+-\mathrm{s} /-\mathrm{a}$

U20
*suffixes

* ${ }^{\text {C-C }}{ }^{\text {i }}$
(t) $\quad \mathrm{DR}_{1} K \mathrm{R}_{2}=$ pa- $+-\mathrm{C}^{\mathrm{i}}+-\mathrm{K}+-\mathrm{s} /-\mathrm{a}$

U20
suffixes
${ }^{*} \mathrm{C}^{\mathrm{C}} \mathrm{C}^{\mathrm{i}}$
(u) $\quad \mathrm{KR}_{1} \mathrm{R}_{2} \mathrm{D}=-\mathrm{K}+-\mathrm{C}^{\mathrm{i}}+-\mathrm{s} /-\mathrm{a}+\mathrm{pa}-$
*U20
*suffixes
C-C ${ }^{\text {i }}$
(v) $\quad \mathrm{KR}_{1} \mathrm{DR}_{2}=-\mathrm{K}+-\mathrm{C}^{1}+\mathrm{pa}-+-\mathrm{s} /-\mathrm{a}$
*U20
*suffixes
C-C ${ }^{\text {i }}$
(w) $\mathrm{KDRR}_{1} \mathrm{R}_{2}=\quad-\mathrm{K}+\mathrm{pa}-+-\mathrm{C}^{\mathrm{i}}+-\mathrm{s} /-\mathrm{a}$

U20
*suffixes

* C - ${ }^{\text {i }}$
(x) $\quad D_{K} R_{1} R_{2}=\quad$ pa- $+-K+-C^{i}+-s /-a$

U20
suffixes $^{\text {C- }}$

RESULT: Three structures ($\mathrm{d}, \mathrm{l}, \mathrm{x}$) survive all constraints

66) (d) $\mathrm{D} \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{~K}=$ pa-+-s/-a+-C+-K \Rightarrow pessum, pessu, etc. [boxed/(i)] (1) $\quad \mathrm{DKR}_{2} \mathrm{R}_{1}=$ pa- $+-\mathrm{K}+-\mathrm{s} /-\mathrm{a}+-\mathrm{C}^{\mathrm{i}} \quad \Rightarrow$ pessi
(x) $\mathrm{DKR} \mathrm{R}_{1} \mathrm{R}_{2}=$ ba- $+-\mathrm{K}+-\mathrm{C}^{\mathrm{i}}+-\mathrm{s} /-\mathrm{a} \quad \Rightarrow$ petta, penna, pessa
(x) DK R1 R ${ }_{2}=$ pa- $+-\mathrm{K}+-\mathrm{C}^{\mathrm{C}}+-\mathrm{s} /-\mathrm{a} \quad \Rightarrow$ betta, penna, pessa [italicized/(ii)]

Only other structure that fares even reasonably well in (65) is (p):
(67) (p) $\quad \mathrm{DR}_{2} \mathrm{~K} \mathrm{R}_{1}=$ pa- $+-\mathrm{s} /-\mathrm{a}+-\mathrm{K}+-\mathrm{C}^{\mathrm{i}}$
?? U20 (subex.)
C-C ${ }^{\text {i }}$
Problem is that (p) requires subextraction, which is a questionable move.
NB: something like m.DAT.SG $p a-s-u m-C^{i}>* p a s u m m i$ is conceivable, but unattested

5. Conclusion

> Significant amount of intraparadigmatic variation in ON RDem

- We can isolate at least five separate RDem ingredients: $p a-,-K,-C^{i},-s,-a$
- Four syntactic heads: $\mathrm{D}=p a-, \mathrm{K}=-\mathrm{K}, \mathrm{R}_{1}=-C^{i}, \mathrm{R}_{2}=-s /-a$
$>$ One fseq ($\mathrm{R}_{2} \underline{\mathrm{R}}_{1} \underline{\mathrm{~K} \mathrm{D})}$: of the 24 possible base-generated orders of these four heads, only one can account for the RDem facts
> Three different kinds of U20 derivations / structures: 'fully cylic', 'partially cylic', 'roll-up'
> Morphological reflex of the roll-up derivation: if a form has a roll-up derivation, then R_{2} is lexicalized as $-a$; if a form has a cyclic-type derivation, then R_{2} spells out as $-s$.
- In modern Icelandic the roll-up derivation also coincides with an extra K marker
- Only three structures are possible in the first place: syntactic, morphological, and phonological constraints rule out 21 possible structures while allowing the three observed structures
> Interesting evidence for Cinque's (2005) system, but let's not get too comfortable:
- "If cyclic, spell out $-s$; if not cyclic, spell out $-a$ " \rightarrow derivation controls lexicalization
- Actually, in the Principles and Parameters framework, the opposite should hold:

All variation is lexical; it is the content of the lexicon that dictates which syntactic structures are derived (see Starke 2011a)

REFERENCES

Axelsdóttir, Katrín. 2003. Saga ábendingarfornafnsins sjá. Íslenskt mál 25, 1: 41-77.
Barnes, Michael. 2004 [1999]. A new introduction to Old Norse, Part I: Grammar. Viking Society for Northern Research, University College London.
Bernstein, Judy. 1997. Demonstratives and reinforcers in Romance and Germanic languages. Lingua 102 87-113.
Caha, Pavel. 2009. The nanosyntax of case. PhD dissertation, University of Tromsø.
Campbell, Alistair. 2003 [1959]. Old English grammar. Oxford University Press.
Cinque, Guglielmo. 2005. Deriving Greenberg's Universal 20 and its exceptions. Linguistic Inquiry 36, 3: 315-32.
The compact edition of the Oxford English Dictionary, P-Z (= OED). 1971. Oxford University Press. D'Hulst, Yves. 2006. Romance plurals. Lingua 116: 1303-1329.
Etymologisches Wörterbuch des Althochdeutschen, II (= EWAhd II). 1988-. A. Lloyd, O. Springer \& R.
Lühr (eds.). Göttingen: Vandenhoeck \& Ruprecht.
Faarlund, Jan Terje. 2004. The syntax of Old Norse: With a survey of the inflectional morphology and a complete bibliography. Oxford: Oxford University Press.
Gibson, C. St. John \& Ringen, C.O. 2000. Icelandic umlaut in optimality theory. Nordic Journal of Linguistics 23, 1: 49-64.
Gordon, E.V. 1956 [1927]. An introduction to Old Norse (A.R. Taylor, ed.). Oxford: Oxford University Press.
Greenberg, Joseph. 1963. Some universals of grammar with particular reference to the order of meaningful elements. Universals of language (J. Greenberg, ed.): 73-113. Cambridge: MIT Press.
Haugen, Einar. 1976. The Scandinavian languages: An introduction to their history. Cambridge: Harvard University Press
Haugen, Einar. 1982. Scandinavian language structures. Minneapolis: University of Minnesota Press Johnsen, Sverre Stausland. 2012. Syncope of long *ī in Old Norse nouns. Germansk filologi og norske ord: 33-51. Oslo: Novus.
Kayne, Richard. 1994. The antisymmetry of syntax. Cambridge: MIT Press
Kayne, Richard. 2005. Movement and silence. New York: Oxford University Press.

Krahe, Hans. 1969. Germanische Sprachwissenschaft, I-II (W. Meid, ed.), $7^{\text {th }}$ ed. Berlin: Gruyter. Lander, Eric T. 2013. Gothic and the Northwest Germanic reinforced demonstrative. $25^{\text {th }}$ Scandinavian Conference of Linguistics. May 13-15, University of Iceland.
Lander, Eric T. In prep. The nanosyntax of the Northwest Germanic reinforced demonstrative
Leu, Thomas. 2007. These HERE demonstratives. U.Penn working papers in linguistics, 13.1: 141-154 Leu, Thomas. 2008. The internal syntax of determiners (GAGL 47). PhD thesis, NYU.
McFadden, Thomas. 2004. On the pronominal origins of the Germanic strong adjective inflection. Ms., University of Tromsø.
Nielsen, Hans Frede. 2000. The Early Runic language of Scandinavia. Heidelberg: Winter.
Noreen, Adolf. 1923 [1884]. Altnordische Grammatik I: Altisländische und altnorwegische grammatik, 4 ed. Halle (Saale): Max Niemeyer.
Robinson, Orrin W. 1992. Old English and its closest relatives: A survey of the earliest Germanic languages. Stanford: Stanford University Press
Samnordisk runtextdatabas. www.nordiska.uu.se/forskn/samnord.htm. Uppsala University.
Sandøy, Helge. 1994. The nature of "overlong syllables" in the Scandinavian languages. Phonologica 1992 (W. Dressler et al., eds.): 233-242. Torino: Rosenberg \& Sellier.

Starke, Michal. 2011a. Towards an elegant solution to language variation: Variation reduces to the size of lexically stored trees. LingBuzz/001183
Starke, Michal. 2011b. Course on nanosyntax. November 7-10, Ghent University
Sturtevant, Albert Morey. 1943. Notes on Old Norse phonology. Scandinavian Studies 17, 5: 157-166. Society for the Advancement of Scandinavian Study.

Though it is considered a defining morphological characteristic of the Northwest Germanic (NWGmc) branch, RDem has not received a detailed treatment in the literature and scholars apparently despair at the task:

The dem[onstrative] pron[oun] 'this' is formed partly by adding -se to the [demonstrative 'that'] (as in WGme), partly a, specially Nordic suffix, and is then given a variety of adjectival inflections, which makes it impossible to set up C[ommon] Sc[andinavian] paradigm. (Haugen 1982: $100-1$, my bold)
Old Low Franconian, the ancestor of modern-day Dutch dialects, cannot be included in my research. Even though RDem ${ }_{3}^{\text {surely }}$ existed in this language, it happens to be unattested in our limited sources of (Robinson 1992: 214)
The origins of this particle are most likely verbal (OED P-Z: 3295), such that it is cognate with the following imperatives and discourse particles: Go. saih, sai; OHG see, se; ON sé, se 'see! look!'. RDem in its earliest form probably meant something like ook at that!'. See the EWAhd (II: 608-617) for a pronominal etymology.
susi: DR 229. saR:si: Sö 137, Sö 340. sasi: DR 189. pan:si: Sö 158. pansi: extremely prevalent, e.g. DR 40; Ög 44. pat:si: So
47. patsi: Sö 46. paimsi: Öl 1.
Robinson (1992: $89-90$, my bold): "Old Norse has developed an 'intensified' demonstrative pronoun...by attaching an intensifying particle -si to the regular demonstrative, and then cer this rigin obscure."
Sandey 1994) be syllabified using an empty nucleus (e.g. pee.sØ..si). However, the shift towards external inflection during the transitional period would have rendered this morpheme boundary meaningless, making such a solution unavailable.
pansi: extremely prevalent; to name only a few, DR $40,53,291 ;$ Ög 81,$165 ;$ Sö $45,131,154 ; \mathrm{Sm} 42,78 ; \mathrm{Vg} 47,51 ; \mathrm{U} 342$, 394. pan:si: Sö 158. pensi: Br E2; DR 83; Ög 201, 203, 207, 211 ; Vg 73, 127, 175. pinsi: Br SC14; DR 220, EM85;239,
 100 ; U 617 .
${ }^{\text {The existence of forms with an intrusive } r \text { (e.g. hvassrar, hvassri, and } \text { hvassra) is a development in post-classical ON due to }}$ ${ }^{9}$ The existence of forms with an intrusive r (e.e.g. hvassrar, hvassri, and hvassra) is a development in post-classical ON due to
analogy with adjectives that did not have r-assimilation (Noreen 1923: 200-202, 292; Sturtevant 1943), thus it is not relevant analogy
here. here.
${ }^{10}$ Fro
 Gmc. The West Gmc RDem paradigms are treated in Lander (in prep.).

${ }^{1}$ Cf. also D’Hulst (2006): Latin plural $-s>$ Italian $-i$, where the [+coronal] feature of s survives all the way into the plural

 marker of modern Romance.tion here has been simplified from droo.tØ.ti... (see Sandoy 1994: 236-237 on the special status of the sequence t ${ }_{13}$ *ht).
Note, however, the existence of the variants M.NOM.SG pesser and F.NOM.SG/ N.NOM/ACC.PL pessor (Axelsdóttir 2003: 68, Katrin Axelsdottir p.c.). These are clear cases of external inflection. Important to note, however, is that both of these are primarily Old Norwegian forms: pesser is not attested in Old Icelandic texts and pessor is much more prevalent in Norwegia than in Icelandic (Katrín Axelsdóttir p.c.). I therefore consider them outside the realm of this talk. Nonetheless, they do not pose ${ }_{14}$ a problem, since they are simply "boxed forms' in my system.

27, 2008), who propose that a silent HERE combines with a ${ }_{15}^{\text {determiner to give a proximal demonstrative. This kind of HERE is distinct from the locative reinforcer here. }}$ replaced by pessi. In Lander (iies are crucial for accounting for the older Norse form MN.NOM.SG sja, which was gradually ${ }^{16} \mathrm{~A}$ possible solution would be to treat $\left[\mathrm{K}_{3} \mathrm{~K}_{2} \mathrm{~K}_{1}\right]$ as a complex head structure in cases such as these Such and the intuition that K is a suffix in on on ON 期 $\left.\mathrm{K}_{2} \mathrm{~K}_{1}\right]$ as a complex head structure in cases such as these. Such an approach loses us traditional stance and assume that we want to treas $O N K$ as we treat K as a postposition (Michal Starke, p.c.). I will take the traditional stance and assume that we want to treat ON K as suffixal.
(i)

This order is only attested in three languages, and in two of them it alternates with the perfectly derivable order N Dem Num A
(Cinque 2005: 323 , fn. 27).
隹e or failure to package should be considered fatal flaws. Twenty-two of the fseqs (b-w) have suc flaws and should be disposed of completely. Two fseqs are left over. Fseq (a) survives all the tests perfectly. Its reverse, fseq (x), fares next best, but it has KP constituency problems in two of the templates. As mentioned in n. 16 , we might save (x) by allowing KP to be a complex head, but this would imply a postpositional analysis of K in ON , a complication we should stee clear of.
F.ACC.SG / MACC PL not sufficient for a form simply to end in a vowel in order for an exta m.nom.sg pessi, f.dat.sg pessari, and gen.pl pessara do not surface as *pessir (i.e. pessi-r), *pessariri (i.e. pessari-ri), or ${ }_{20}^{*}$ essarara (i.e. pessara-ra).
${ }^{20}$ For the last form, $-\delta$ is slightly different from $-t$. It is taken from the final $-\delta$ of N.NOM/ACC.SG $\operatorname{pa\delta }$ (cf. also the determiner hid), which historically comes from N.NOM/ACC.SG pat ($t>d>\delta$ in weakly stressed words in medieval Scandinavian; Haugen 1982: 64). The N.NOM/ACC.SG ending remains $-t$ in Icelandic.

[^0]: I am grateful to Liliane Haegeman and Michal Starke for invaluable discussion, guidance, and comments. Thanks also to Sverre Stausland Johnsen and Katrín Axelsdóttir for discussion of the data, and to GIST for useful feedback on previous versions of this talk (April 2 \& 12, 2013 and March 26, 2014). My research is supported by BOF grant 01 D 30311.

[^1]: (27) (a) ba-ssi $>$ be-s

[^2]: \rightarrow We have straightforward morphological evidence for Cinque's derivational system.

