

NOMINAL CONCORD NEEDS HARMONIC SERIALISM. **UNIVERSITÄT** GLOW 42,0510 May 8,2019 EVIDENCE FROM ARCHI

Sören E. Tebay (tebay@uni-leipzig.de)

Universität Leipzig

1. Main Claim

- ◆ Concord in Archi ist best analysed as feature copying in Harmonic Serialism.
- \bullet An existing approach posits an unrestricted copy operation (Polinsky, 2016).
- \bullet A parallel contraint based approach (SPOT) faces the sour grapes problem (McCarthy, 2009) and cannot derive gapped structures.
- ◆ A Harmonic Serialism account avoids these problems by allowing opaque interaction of a local operation.

2. Data: Concord in Archi

4. Analysis

- ◆ The local copy operation combined with serial evaluation allows for an iterative, bounded concord process, potentially including intermediate feature hosts.
- \bullet The high ranked $*\gamma/D$ constraint bounds the copy operation inside the NP.
- (8)Bounded Copying

`"O

DP/D

čeħ

Derivation of (1) - $\boxed{1}$ (9)

$[_{\rm NP} \ {\rm PtcpP} \ {\rm N}_{\rm IV}]$	$*\gamma/\mathrm{D}$ Left	$(\gamma, NP) * \gamma/N$	$\mathrm{Max}(\gamma)$
a. $[_{NP} PtcpP N_{IV}]$	*!	*	
ræb. [_{NP} PtcpP _{IV} N _{IV}]		*	
c. $[_{NP} PtcpP N]$	*!		*

(10)Derivation of (1) - 2 $|\gamma/\mathrm{D}| \operatorname{Left}(\gamma, \operatorname{NP}) |\gamma/\mathrm{N}| \operatorname{Max}(\gamma)$ $[_{NP} PtcpP_{IV} N_{IV}]$

- ✦ Gender concord in Archi (Nakh-Daghestanian, Russia) occurs on participles, numerals, demonstratives, and pronominal possessors.
- \bullet It never occurs on quantifiers, nominal possessors and nominal adjectives.
- (1)čeħ hiba-t:u-t adam not.one be.good-ATTR-IV.SG person(IV)[SG.ABS] 'not one good person' (Bond & Chumakina, 2016b, 116)
- do:^szu-b (2)łxej****u χošon to-b that-III.SG five<III.SG> be.big-ATTR-III.SG dress(III)[SG.ABS] (Bond & Chumakina, 2016a, 56) 'those five big dresses'
- masarul duχriq^s (3)łx^wak-du-t village(IV).LOCnear-ATTR-IV Avar (Polinsky, 2016, 230) 'in the nearby Avar village'
- \blacklozenge Similarly, low adverbs share the agreement of the verb.
- (4)Pat'i $dit:a < r > u da-q^{s}a$ Pati(II).SG.ABS early<II.SG> II.SG-come.PFV 'Pati came early.' (Bond & Chumakina, 2016b, 113)

3. Assumptions: Serial Copying

NP

a. $[_{NP} PtcpP_{IV} N_{IV}]$		*!	
ræb. [_{NP} PtcpP _{IV} N]			*
c. $[_{NP} PtcpP N_{IV}]$	*!	*	*

Derivation	of	(1)	- 3
------------	----	-----	-----

$[_{\rm NP} DP [PtcpP_{\rm IV} N]]$	$ \gamma/D$	$ \text{Left}(\gamma, \text{NP}) $	$ \gamma/N$	$\mathrm{Max}(\gamma)$
ISPa. $[_{NP} DP [PtcpP_{IV} N]]$		*		
b. $[_{NP} DP [PtcpP N]]$		*		*!
c. $[_{NP} DP_{IV} [PtcpP_{IV} N]]$	*!			
d. $[_{NP} DP [PtcpP_{IV} N_{IV}]]$		*	*!	

 \bullet Merge adds a new highest head to the NP, allowing LEFT(γ , NP) to trigger copying iteratively.

(13)

Derivation of (2)) - []			
$[_{\rm NP} \ {\rm PtcP} \ {\rm N}_{\rm III}]$	$*\gamma/D$	$Left(\gamma, NP)$	$*\gamma/N$	$\operatorname{Max}(\gamma)$
a. [NP PtcP N_{III}]		*!	*	
ræb. [_{NP} PtcP _{III} N _{III}]			*	
c. $[_{NP} PtcP N]$		*!		*

Derivation of (2) - 3(14)

Derivation of $(2) = 0$				
$[NP NumP [PtcP_{III} N]]$	$ \gamma/{ m D} $	$\operatorname{Left}(\gamma, \operatorname{NP})$	$^*\gamma/N$	$\mathrm{Max}(\gamma)$
a. $[_{NP} NumP [PtcP_{III} N]]$		*!		
ISB. [_{NP} NumP _{III} [PtcP _{III} N]]				

(15)Derivation of (2) - [4]

$[NP DemP [NumP_{III} []]]$	$^*\gamma/\mathrm{D}$	$\text{Left}(\gamma, \text{NP})$	$^*\gamma/N$	$\operatorname{Max}(\gamma)$
a. $[_{NP} DemP [NumP_{III} []]]$		*!		
■ $\mathbb{P}_{\mathrm{III}}$ [NumP _{III} []]]				

- ◆ NP-over-DP structure with all modifiers as specifiers (Georgi & Müller, 2010)
- ✦ Harmonic Serialism (McCarthy, 2010)/Extremly Local Optimization (Heck & Müller, 2007) with a local feature copy operation and general feature delete operation (cf. Breteler (2017)).
- \bullet Feature coocurrence constraints (Gazdar et al., 1985) and LEFT(γ ,XP) as a trigger of concord.
- (5)Operations for nominal concord
 - a. COPY: A feature F with an index i on a head X is copied onto another adjacent head Y. This yields a feature F with an index i on head Y.
 - **DELETE:** A feature F with an index i on a head X is deleted from the b. head X. There is no feature F with an index i on head X anymore.

(7)

- (6)Locality restriction on COPY A head X is adjacent to a head Y iff
 - There is a node Z, such that a.
 - Z directly dominates YP and
 - (ii) Z dominates X
 - b. and there is no head A, such that YP c-commands A and
 - AP c-commands X. (ii)
- a. $*\gamma/X$: Count one violation for every head that bears a categorical feature X and a gender feature.
- b. LEFT (γ, XP) : The highest head in XP should bear a gender feature.

AdvP

AdvP

NP

 \Rightarrow Ranking $*\gamma/NP$ below this constraint, allows for nominal adjectives to serve as intermediate hosts with their features deleted only after it has been copied to a higher position.

(17)	Derivation of	f (3) - 1
------	---------------	-----------

$\left[NP NP N_{IV} \right]$	$ ^*\gamma/D$	$\operatorname{Left}(\gamma, \operatorname{NP})$	$ ^*\gamma/N$	$\operatorname{Max}(\gamma)$
a. $[_{\rm NP} \ {\rm NP} \ {\rm N}_{\rm IV}]$		*!		
$\textcircled{R} b. \begin{bmatrix} NP & NP_{IV} & N_{IV} \end{bmatrix}$			**	
c. [_{NP} NP N]		*!		*

Derivation of (3) - $\boxed{2}$ (18)

$\left[_{\rm NP} \ {\rm NP}_{\rm IV} \ {\rm N}_{\rm IV} \right]$	$^*\gamma/\mathrm{D}$	$Left(\gamma, NP)$	$^*\gamma/N$	$\mathrm{Max}(\gamma)$
a. $[_{NP} NP_{IV} N_{IV}]$			**!	
r b. [_{NP} NP _{IV} N]			*	*
c. $[_{\rm NP} \ {\rm NP} \ {\rm N}_{\rm IV}]$		*!	*	*

Derivation of (3) - $\overline{3}$				
$[NP PtcP [NP_{IV} N]]$	$ ^*\gamma/\mathrm{D} $	$Left(\gamma, NP)$	$^*\gamma/N$	$\mathrm{Max}(\gamma)$
a. $[_{NP} PtcP [NP_{IV} N]]$		*!	*	
IS b. [_{NP} PtcP _{IV} [NP _{IV} N]]			*	

(20)

Derivation	of	(3)	_	4
------------	----	-----	---	---

$[_{\rm NP} \ {\rm PtcP_{IV}} \ [\ {\rm NP_{IV}} \ {\rm N} \]]$	$*\gamma/D$	$Left(\gamma, NP)$	$^*\gamma/N$	$\mathrm{Max}(\gamma)$
a [ND PtcP [NP N]]			*	

5. Extensions: Adverbs and beyond

 \bullet The account of the nominal concord can be (21) Concord on adverbs vP extended to adverbial agreement.

- \bullet Constraint against gender features on v and constraint requiring the highest head in the VP to bear gender features restrict agreement to lower adjectives.
- \bullet Reranking of the constraints MAX(γ) and $*\gamma/N$ yields a Bantu-like noun class pattern.
- Other possible rankings predict i.a. no concord or full condord.

References

- Bond, Oliver & Marina Chumakina. 2016a. Agreement domains and targets. In Oliver Bond, Greville Corbett, Marina Chumakina & Dunstan Brown (eds.), Archi: Complexities of agreement in cross-theoretical perspective, 43–75. Oxford: University Press.
- Bond, Oliver & Marina Chumakina. 2016b. Competing controllers and agreement potential. In Oliver Bond, Greville Corbett, Marina Chumakina & Dunstan Brown (eds.), Archi: Complexities of agreement in cross-theoretical perspective, 77–117. Oxford: University Press. Breteler, Jeroen. 2017. Deriving bounded tone with layered feet in harmonic serialism: The case of Saghala. Glossa 2(1).
- Gazdar, Gerald, Ewan Klein, Geoffrey K Pullum & Ivan A Sag. 1985. Generalized phrase structure grammar. Harvard University Press. Georgi, Doreen & Gereon Müller. 2010. Noun-phrase structure by reprojection. Syntax 13(1). 1-36.
- Heck, Fabian & Gereon Müller. 2007. Extremely local optimization. Proceedings of the 26th WECOL 170–183
- McCarthy, John J. 2009. Harmony in harmonic serialism. Linguistics Department Faculty Publication Series 41.
- McCarthy, John J. 2010. An introduction to harmonic serialism. Language and Linguistics Compass 4(10). 1001–1018
- Polinsky, Maria. 2016. Agreement in Archi from a minimalist perspective. In Oliver Bond, Greville Corbett, Marina Chumakina & Dunstan Brown (eds.), Archi: Complexities of agreement in cross-theoretical perspective, 184–231. Oxford: University Press.

6. Discussion: Alternative Approaches

- \bullet The operation-based account in Polinsky (2016) needs a non-local unrestricted operation and thus massively overgenerates. Copying is iterative and disregards barriers (Polinsky, 2016, 229-230).
- \bullet A global constraint based account has the sour grapes property and problems with gapped structures. Opaque interaction is not possible (McCarthy, 2009).
- \bullet In contrast, the present account employs a local, iterative copy operation, bounded by feature cooccurence constraint.
- ◆ It uses serial evaluation and counterbleeding interaction to solve the problems mentioned above.