Gradient Representations: a new insight into Gorgia and Raddoppiamento

Irene Amato (irene.amato@uni-leipzig.de) GLOW 42 - Universitetet i Oslo

1. Overview

- New analysis of Gorgia Toscana (1b) and Raddoppiamento fonosintattico (1c) in Florentine in the framework of Gradient Symbolic Representations.
 - a. $/in//kasa/'in house' \rightarrow [in/kazza]$ b. /la//kasa/ 'the house' \rightarrow [la'xazza] c. /a//kasa/ 'at home' \rightarrow [a'k:a:za]
 - d. /a//kasa/ 'at home' $\rightarrow *[a'x:a:za]$
- Unified explanation (strengthening \sim undershoot) for the different outcomes of a single underlying form: $/k/ \rightarrow [k], [k:], [x], *[x:].$
- Crucial argument: complementary distribution between Gorgia and RF: $/k/ \rightarrow *[x:]$ (1d).
- Empirical adequacy: length of these derived segments (RFallophones \neq lexical geminates).

3. The framework

- Gradient Symbolic Representations: continuous, numerical weight \sim degree of activity or presence of a symbol in a linguistic representation (Smolensky & Goldrick 2016).
- Numerical gradience associated to input and output elements (Faust & Smolensky 2017, Zimmermann 2018).
- The computation is couched in *Harmonic Grammar*: the constraints are weighted, not ranked.

4. The proposal

- Strength is an autosegmental object of the linguistics representation.
- /a'miko/ 'friend' \rightarrow [a'mixo] syllabic tier moraic tier strength tier $1 \ 1.5 \ 0.7 \ 1$ root node tier segmantal tier
- The phonological strength is a correlate of the phonetic length.
- The gradient activity of the output segments can be other than 1.
- Stress brings into the representation some phonologically derived extra-activity that can be associated to a segment. (5)

$$1.5$$
 — [k:] [RF]
 $/k/$ — 1 — [k] [#_-, C_-]
 0.7 - [χ , x, h] [V_-]

- RF-geminates: non-moraic consonants associated to a strength value greater than 1 ("more present" in the representation) \rightarrow interpreted by the phonetics as long.
- Lenited allophones: defective segments, weaker than default ("not canonically present" in the representation) ightarrowinterpreted by the phonetics as non-occlusive and, consequently, as short.

7. References

• R. Campos-Astorkiza (2014) Lengthening and prosody in Tuscan Italian. International Journal of Basque Linguistics and Philology XLVI-1. ● N. Faust and P. Smolensky (2017) Activity as an alternative to autosegmental association. Talk given at mfm 25. • R. Kirchner (2000) Geminate inalterability and lenition. Language. • M. Loporcaro (1997) Lengthening and raddoppiamento fonosintattico. The dialects of Italy, London-New York, Routledge. • G. Marotta (2008) Lenition in Tuscan Italian (Gorgia Toscana). Lenition and fortition. • E. M. Payne (2006) Non-durational indices in Italian geminate consonants. Journal of the International Phonetic Association 36.1. • P. Smolensky & M. Goldrick (2016) *Gradient* symbolic representations in grammar: The case of French liaison. Ms. Johns Hopkins University and Northwestern University. • P. Sorianello (2002) I suoni fricativi dell'italiano fiorentino. Quaderni del Laboratorio di Linguistica 3. • P. Sorianello, M.J. Solé, D. Recasens & J. Romero (2003) Spectral characteristics of voiceless fricative consonants in Florentine Italian. Proceedings of the 15th International Congress of Phonetic Sciences. • E. Zimmermann (2018) Exceptional non-triggers are weak: The case of Molinos Mixtec. Talk given at OCP 15.

2. The phenomena (Tuscan, Florentine)

Raddoppiamento fonosintattico (RF) (Chierchia 1983-86, Loporcaro 1997, Passino 2013)

Sandhi process, where the initial consonant of the word₂ in the string word₁-word₂ is lengthened if:

- a. $word_1$ is an oxytone:
 - / \mathfrak{f} i't \mathfrak{r} a//'kara/ 'dear town' $\longrightarrow [\mathfrak{f}$ i't \mathfrak{r} ara]
 - Stress-driven RF b. $word_1$ is an item of a closed lexical class, whose historically earlier form has a consonant in final position: a, da, e, o, ma, né, tra, come, dove, qualche 'to, from, and, or, but, nor, between, how, where, some'

''kome//'va/ 'how are you?' \rightarrow ['korme'**vr**a] Lexical RF

- Gorgia ('Tuscan throat') (Kirchner 2000, Marotta 2006, 2008, Rammsammy 2017)
- Postvocalic consonant lenition: gradient, continuous phenomenon, with areal and style-dependent variability.
- It targets primarily stops, but all consonants; word-internally and across word boundaries (intervocalic position or branching onset):
 - a. /la//koxsa/[la/koxsa] 'the thing' \rightarrow [la/ho:sa] b. /la//kre:ma/[la'kre:ma] 'the cream' \rightarrow [la'xre:ma]
- *Asymmetry: word-internally, Gorgia is independent from stress; across word-boundary, it is only possible after non-stressed vowels. Why no lenition in $(2a) *[tfi'txa'xara]? \checkmark Gorgia is in complementary distribution with RF.$

The derived segments: evidence for strength

- RF-geminates are shorter than lexical geminates (47% vs 200% longer than the singletons) (Campos-Astorkiza 2014) and resemble singletons (Payne 2006) \rightarrow strengthening
- ullet Allophonic fricatives are: shorter than phonematic fricatives ($[\phi]=51$ ms vs [f]=83 ms) (Sorianello 2002) + shorter than non-lenited stops ([h]= 44 ms vs [k]= 88 ms) (Sorianello et al. 2003) \rightarrow weakening

5. The analysis

The constraints

- \mathbb{W} WEAK!-C-V_V: Assign z violation for every intervocalic consonant with strength y in the output (z=y).
- *FLOAT: assign z violation for every output activity (x) that is not linked to an output segment (z=y).
- \bigcirc ONE!: Assign z violation for every segment that has strength y>1 in the output (z=y-1).
- \square ONE!-V#: Assign z violation for every final vowel that has strength y>1 in the output (z=y-1).
- \bowtie Max(STR): Assign z violation for every activity (x) that is present in the input but not in the output (y) (z=y-x).
- *WEAK: Assign z violation for every segment that is present in the output with a strength (y)lower than 0.6 (z=1-y).
- \square UNIF(STR): Assign z violation for each output activity (y)that corresponds to the fusion of more than 1 input activity (z=y).

The derivations

Gorgia: *la casa* /la ' $k_{0.7}$ asa/ \rightarrow [la 'xa:za]

$/la$ k_1 as $a/$	Weak!-C-V_V	*WEAK	Max(str)	Н
weight	-7	-3	-3	
a. lak_1asa	1			-7
□ b. lak _{0.7} asa	0.7		0.3	-5.8
c. lak _{0.6} asa	0.6	0.4	0.4	-6.6

Stress-driven RF: città cara / \mathfrak{f} i't:a ' $\mathbf{k_{1.5}}$ ara/ \rightarrow [\mathfrak{f} i't:a $\mathbf{k_{2}}$ ara]

/ \mathfrak{fit} ta $_1$ 0.5 k_1 ara/	*FLOAT	One!-V#	WEAK!-C-V_V	Max(str)	ONE!	UNIF(STR)	Н
weight	-17	-13	-7	-3	-1	-1	
a. ∉iˈt:a₁ ^{0.5} k₁ara	0.5		1				-15.5
🖙 b. ∯iˈt:a ₁ k _{1.5} ara			1.5		0.5	1.5	-12.5
c. ʧiˈt:a _{1.5} k ₁ ara		0.5	1		0.5	1.5	-15.5
d. ∉iˈt:a _{1.5} k _{0.7} ara		0.5	0.7	0.3	0.5	1.5	-14.3
e. ʧiˈt:a ₁ ^{0.5} k _{0.7} ara	0.5		0.7	0.3			-14.3

- * The realization of strength overcomes the need for weak consonants: *[tʃi'tɪa'xara].
- **Lexical RF**: come va /'kome ' $v_{1.5}$ a/ \rightarrow ['ko:me 'v:a]

$/$ 'kome $_1$ $^{0.5}$ 'v $_1$ a $/$	*FLOAT	One!-V#	WEAK!-C-V_V	Max(str)	ONE!	Unif(str)	Н
weight	-17	-13	-7	-3	-1	-1	
a. $kome_1$ v_1a	0.5		1				-15.5
r b. ˈkome ₁ v _{1.5} a			1.5		0.5	1.5	-12.5
c. $kome_{1.5} v_1a$		0.5	1		0.5	1.5	-15.5
d. 'kome _{1.5} v _{0.7}		0.5	0.7	0.3	0.5	1.5	-14.3
e. ˈkome ₁ ^{0.5} v _{0.7} a	0.5		0.7	0.3			-14.3

- * The representation of word₁ contains some floating strength (corresponding to a final etymological consonant).
- * RF-gemination is caused by associating to a segment some extra-strength that is either brought in by stress (7) or originally associated to another segment (8).

6. Concluding remarks

- RF arises by associating extra strength to a segment; it is therefore related to the phonological representation of linguistic elements and its sole trigger is *FLOAT.
- Gorgia is a weakening process of postvocalic lenition that involves a decrease of strength. Lenited allophones are phonologically defective segments.
- What is new: (i) the competition between these two phenomena and their competitioncomplementary distribution, (ii) the representation of the derived segments based on the concept of phonological strength with a broader empirical adequacy than other approaches, (iii) a new contribution to the understanding of the division between phonetics and phonology.
- Possible further implementations: stressed vowel lengthening, the diachronic development of weak segments, synchronic variability of Gorgia, backward gemination, vowel deletion...