
This paper concerns improper scope phenomena, our name for the much-studied
cluster of cases when a pronoun has an antecedent which does not syntactically bind it:

(1) a. A dog entered. It sat. Cross-sentential anaphora
b. Every student wrote a paper. They are on my desk. Summation pronouns
c. The employee who saved her paycheck was wiser than the one who cashed it.

Paycheck pronouns, Karttunen (1969); Jacobson (2000)
d. Every farmer who owns a donkey beats it. Donkey pronouns, Geach (1962)
e. Every student wrote a paper. Most turned it in. Subordination, Sells (1985)

The E-type approach to these phenomena follows Evans (1977) in assuming E-type
pronouns akin to definite descriptions, picking out a unique referent satisfying some salient
description, such as the dog who entered for the pronoun in (1-a). Exactly what makes
a description salient or unique is often not formalized, though, leading to problems much
discussed in the literature, which require more and more formal complexity (see Heim, 1990,
a.o.). Dynamic approaches (Kamp, 1981; Heim, 1983; Groenendijk and Stokhof, 1991)
instead propose that antecedents like a dog update a context state to store a discourse
referent (in this case, a particular dog) as the value for variable x. A later pronoun, even one
in a different sentence, can retrieve the value of x. In attempting to capture the full range
of phenomena mentioned above, though, dynamic semanticists have found it necessary to
propose ever more complex context states. Moreover, dynamic systems struggle with some
cases that the E-type approach captures easily, such as paycheck pronouns.

We propose instead a new static system, based on predicate logic, with three simple
changes: (i) following Heim (1982, Chp 2) we propose that indefinites introduce variables
existentially closed by higher operators, (ii) in particular we propose an operator Σ that
∃-closes indefinites and returns sums of individuals, and (iii) we allow uppercase variables
to store and retrieve subformulas. The resulting, static system, covers the empirical ground
of both existing approaches without the complexity required to solve problems in each.

Consider in (2) a standard interpretation of predicates and conjunction in terms of sets
of assignments (take M(P ) as the interpretation of predicate P in the relevant model M).
New, optional brackets around variables mark what we call local variables, roughly those
introduced by determiners, including indefinites. L(ϕ) returns all local variables in ϕ:

(2) JxKg = J[x]Kg = g(x) L(x)=∅, L([x])={x}
JP (τ1, τ2, . . .)K= {g : ⟨Jτ1Kg, Jτ2Kg, . . .⟩∈M(P )} L(P (τ1, τ2, . . .)) = L(τ1)∪L(τ2)∪ . . .
Jϕ ∧ ψK = JϕK ∩ JψK L(ϕ ∧ ψ) = L(ϕ) ∪ L(ψ)

We next add a summation operator ¬Σxϕ
¬ (cf. Kamp and Reyle, 1993), defined in (3),

which (a) existentially closes x and all local variables in ϕ, and (b) denotes the mereological
sum of values for x within ϕ. ( ¬g[x, L(ϕ)]h¬ implements ∃-closure by allowing h to vary from
g just in its values for x and variables in L(ϕ).) Note: the definition of L(Σxϕ) consumes all
local variables. Summing over a discourse’s world variable as in (4) returns a proposition,
capturing cross-sentential anaphora by ∃-closing all local variables at the discourse level:

(3) JΣxϕKg = Σ{h(x) : h∈ JϕK & g[x, L(ϕ)]h} L(Σxϕ) = ∅
(4) Ad dog entered. Itd sat. ⇝ Σw (dog([d], w) ∧ entered(d, w) ∧ sat(d, w))
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Last, we introduce a system of uppercase formula variables (c.f. Keshet, 2018): super-
scripts ¬Xϕ ¬ mark an antecedent ϕ, and then ¬X ¬ alone effectively repeats ϕ verbatim. To
implement this, we assume another parameter like M on JK and L, which we likewise omit
since it is unique to each discourse’s root expression ∆. The antecedent function for ∆ is
that function A such that A(X)=ϕ iff ¬Xϕ¬ occurs in ∆:

(5) JXK = JA(X)K , L(X) = L(A(X));
q
Xϕ

y
= JϕK , L(Xϕ) = L(ϕ) only if A(X)=ϕ

With the system fully in place, we can now straightforwardly analyze the remaining examples
in (1) (world variables are omitted for space reasons only):

(6) a. Everyf [farmer who owns ad donkey]O beats itd
⇝ every

(
ΣO

f(farmer([f ]) ∧ donkey([d]) ∧ owns(f, d)), Σf (O ∧ beats(f, d))
)

b. Everys studentS [wrote ap paper]W . . .
⇝ every

(
ΣS

s student(s),Σ
W
s (S ∧ paper([p]) ∧wrote(s, p))

)
∧ . . .

(i) . . . TheyΣpW are on my desk. ⇝ . . .on-desk(Σp(W ))
(ii) . . .MostsW turned itp in. ⇝ . . .Most (Σs(W ),Σs(W ∧ turned-in(s, p)))

c. Thex employee who saved herpx paycheckP was wiser than thex one who cashed

itΣpP . ⇝ wiser

(
Σx(employee([x]) ∧ saved

(
x,ΣP

p paycheck-of([p], x)
)
),

Σx(employee([x]) ∧ cashed(x,ΣpP ))

)
Notes: We assume that the nuclear scope of a quantifier incorporates the restriction via
formula variable (e.g., O in (6-a) and S in (6-b)). Similarly, quantificational subordination
occurs when a previous nuclear scope formula variable is incorporated in a later restriction
(e.g, W in (6-b-ii)). The analysis of the in (6-c) is quite sketchy and missing the uniqueness
presupposition, among other features.

Our system is easily convertible to straight predicate logic (plus summation terms), by
simply (a) replacing formula variables with their antecedents and (b) introducing explicit
existential closure of local variables within summation terms, as shown in (7). (The reader
is invited to employ this process to better understand the formulas above.)

(7) every
(
ΣO

f(farmer([f ]) ∧ donkey([d]) ∧ owns(f, d)), Σf (O ∧ beats(f, d))
)

≈ every

(
Σf∃f∃d(farmer(f) ∧ donkey(d) ∧ owns(f, d)),
Σf∃f∃d(farmer(f) ∧ donkey(d) ∧ owns(f, d) ∧ beats(f, d))

)
Finally, pronouns denoting summations solve another problem for dynamic approaches,

namely scoping out of (double) negation as in (8). In particular, a formula variable like O
allows ¬ΣcO

¬ to retrieve the car that John owns, even when O’s antecedent is embedded under
negation. Assuming that singular pronouns like it presuppose their value to be (nonempty
and) singular, though, the same set up will not work under single negation as in (9): the
pronoun’s presupposition will contradict the first clause.

(8) It’s not like Johnj doesn’t [own ac car]O. ItΣcO is just in the shop!
⇝ w/∈Σw

(
w/∈ΣO

w(john([j]) ∧ car([c], w) ∧ owns(j, c, w))
)
∧ in-shop(ΣcO,w)

(9) #Johnj doesn’t [own ac car]O. ItΣcO is just in the shop!
⇝ w/∈ΣO

w(john([j]) ∧ car([c], w) ∧ owns(j, c, w)) ∧ in-shop(ΣcO,w) iff |ΣcO|=1
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