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Modeling inter-speaker variation in Velar Softening

In English velar softening (VS), underlying /k/ becomes [s] when it occurs in the environ-
ment: /_+{1, ai}, where + indicates a morpheme boundary. This is a non-automatic process as
lexically-specified exceptions abound. For example, the -ity [1ti] suffix triggers velar softening:
electri[k]~electri[s]ity. However, the suffix -ish [1f] does not: electri[k]~electri[k]ish. Velar
softening is not driven purely by phonotactics. The [ki] and [kar] sequences are legal in English.
But when {1, a1} belong to a VS-triggering suffix, [k] is severely under-represented relative to
[s]inthe/ (+){r, a1} environment: the %[k] (out of all [k] or [s]) is 31.9% in this environment
in general, but only 7.2% with VS-triggering suffixes. (Data from CMU Pronouncing Dictio-
nary; counts based on type frequency.) I will model this asymmetry by utilizing non-automatic
markedness constraints that prohibit the [ki] and [kai] sequences only when their segments
arise from a VS-triggering suffix. Such constraints are non-automatic as they make reference
to specific affixes (Alderete 1999, 1t6 & Mester 1999). One implication of lexically-specified
constraints is that learning when /k/ becomes [s] goes hand in hand with learning morphology
(e.g. To segment a word into stem+suffix? Which suffixes are VS triggers?). Hence, I will
propose a model that learns them simultaneously.

When presented with the same surface information, different learners may arrive at different
analyses (i.e. inter-speaker variation in analyses). In a production task with the -ity suffix and
nonce stems, Pierrehumbert (2006) found that 2 in 10 participants never applied velar softening.
This suggests that approximately 20% of learners may not learn velar softening, but may instead
memorize full underlying forms (e.g. /ilektusiti/) for existing words.

The present study models the underlying representations (UR) and grammars that give rise
to inter-speaker variation in velar softening by modeling how velar softening is acquired. I
assume that word segmentation has taken place by this point in learning, so the child has access
to pairs like electricity (word) and [1lektiistti] (SR), and has to figure out the URs and grammar
that govern the word-to-SR mapping. There are three questions to figure out for the intermedi-
ate word-to-UR mapping: (1) Is there a morpheme boundary in electric(+)ity, (2) If so, is the
suffix one that triggers VS, and (3) Is the consonant of interest /k/ or /s/? For the subsequent
UR-to-SR mapping, the child has learn whether and in which contexts /k/ becomes [s].

The model consists of two Maximum Entropy (Goldwater & Johnson 2003) sub-models
that are chained together via the product rule: P(word, ur, sr) = P(ur, word) X P(sr|ur, word).
The representation sub-model, P(ur, word), models the word-to-UR mapping. The grammar
sub-model, P(sr|ur, word), models whether and when /k/—[s] applies. The two sub-models
interact in order to match the observed word-SR frequencies. For instance, a highly improbable
/k/—[s] in the grammar sub-model influences the representation sub-model towards a UR like
/tlektmstti/ (can produce the correct SR without needing /k/—[s]), and away from a UR like
/tlektuk-+1ti/, for the word electricity. Likewise, the representation sub-model can influence
the grammar sub-model. Highly probable /ilektik-+rtiys_sueix/ and /kiti/ (kitty) will push the
grammar sub-model towards applying /k/—[s] only when a VS-triggering suffix is present.

The representation sub-model is parameterized by UR constraints (Zuraw 2000), whose
weights are adjusted during UR learning. I use two types of UR constraints: (1) Constraints
that specify the presence of a particular morpheme in a word. Such constraints model the
segmentation into morphemes. e.g. The UR constraint ELECTRIC specifies that the morpheme
<electric> is present in the word electricity. It is satisfied by the UR /ilektuk+1ti/, but not
by /ilektusiti/. (2) Constraints that specify relevant properties of the UR of a morpheme. e.g.
The UR constraint (ELECTRIC, /k/) specifies that the morpheme <electric> should have a
morpheme-final /k/. It is satisfied by the UR /ilektmk+iti/, but not by /tlektms+iti/.
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The grammar sub-model has constraints like *k1 that disfavour all [ki] sequences, and a
faithfulness constraint favouring the retention of the underlying segment.

The CMU data suggested that velar softening was driven by the presence of particular
suffixes, so I included the suffix-specific constraint *kiys.suffix, Which disfavoured the [ki] se-
quence if any of its segments arose from a VS-triggering suffix. Each suffix was associated
with a UR constraint (e.g. (-ITY, VS-suffix)) to model its VS-triggering status.

The training data consisted of the frequencies of word-SR pairs (e.g. electricity~[ilektusiti]:
1, electricity~[1lektukiti]: 0, kitty~[kiti]: 1, kitty~[stti]: O, etc.) to mirror the information that
a child received. URs are missing from the observed data (word-SR pairs) that the full word-
UR-SR model predicts. I use Expectation-Maximization (Jarosz 2015) to simulate learning in
this “missing information” scenario. The child/learner’s goal was to match the training data as
closely as possible. 11 of 125 randomly initialized runs were able to match the training data
perfectly (as measured by hitting the ceiling likelihood). In other words, only these 11 trained
models produced the correct surface forms for words they had encountered before.

I subjected these 11 models to a wug task. I included only models that matched the training
data perfectly because actual English speakers have correct surface forms for existing words
that they’ve heard before like electricity, kitty, etc. 1 assume humans have a way to avoid the
local optima that fail to match the training data, such as by further exploring the learning space.
The novel words consisted of novel stems ending in /k/ and the -ity suffix. I supplied the UR
of the nonce stem, while the trained model filled in what it had learned about (1) The -ity suffix
(i.e. is -ity a VS-triggering suffix?), and (2) When to change /k/ to [s]. 10 of the 11 generalized
the alternation to novel stems (each at rates >95%). The one that didn’t predicted that the novel
stem alternates to [s] upon -ity suffixation at a rate <.01%. Overall, my model of simultaneous
morphology-phonology learning predicted that a small but non-negligible minority will fail to
learn the URs and grammar needed to extend the non-automatic alternation to novel stems.
This prediction finds a parallel in the results of Pierrechumbert’s wug study.

The non-generalizing model learned the UR /ilektusiti/ for electricity, and a grammar
where /k/ always surfaced as [k]. (Threshold for a “learned UR” was set at P(ur|word) >
99%.) In contrast, all generalizing models had the UR /ilektuk+1tiys sufix/, and the grammar
for /k/—[s] /_+{1, ai}vs.sufiix- Thus, speakers may split the labour between the lexicon and
morphophonology differently for the same surface VS pattern (i.e. inter-speaker variation).

My model, which simultaneously learns morphology and phonology, predicted: (1) When

morphology isn’t learned, neither is the non-automatic phonological alternation; instead, the
unanalyzed form (e.g. /ilektusiti/) is stored in the lexicon. (2) This occurs at a low yet non-
negligible rate for velar softening. The Pierrehumbert study provided supporting evidence
that a small minority of humans may indeed fall into this category. For these individuals,
not acquiring the required morphology and grammar for the non-automatic [k]~[s] alternation
results in them losing the generalization to novel stems. This in turn could contribute to the
diachronic instability of velar softening.
Alderete, J. 1999. Morphologically governed accent in Optimality Theory. Ph.D. thesis,
UMass, Amherst. Goldwater, S; Johnson, M. 2003. Learning OT constraint rankings us-
ing a maximum entropy model. In: J Spenader, A Eriksson, O Dahl (ed.), Proceedings of the
Stockholm Workshop on Variation within Optimality Theory. 111-20. 1to, J; Mester, A. 1999.
The Phonological Lexicon. In: N Tsujimura (ed.), The Handbook of Japanese Linguistics. Ox-
ford: Blackwell. 62-100. Jarosz, G. 2015. Expectation Driven Learning of Phonology, Ms.
UMass, Amherst. Pierrehumbert, J. 2006. The statistical basis of an unnatural alternation.
In L Goldstein, DH Whalen, CT Best (ed.), Laboratory Phonology VIII. Berlin: Mouton de
Gruyter. 81-107. Zuraw, K. 2000. Patterned exceptions in phonology. Ph.D. thesis, UCLA.



