
A timing approach to escape hatch dependencies Gautam Ottur (University of Göttingen)

Background. A common view of locality in syntax is that extraction out of various locality domains
is disallowed, unless the extracted element is structurally at the edge of that locality domain. Locality
effects like successive-cyclic movement (SCM) are thought to occur because everything except for
the edge of a phase is transferred to the interfaces and becomes inaccessible to further operations.

But phases raise at least two questions: first, why should certain elements be phasal and not
others, and second, why are phase edges exempt from Transfer? A recent counterproposal from
Adger (2024) reduces locality to a general constraint on movement out of specifiers, rather than
phases. In his account, he assumes that elements can have maximally two dependents (the first is its
complement and the second its specifier, see also Kayne 1994; Brody 2000). Simplifying greatly,
his proposal culminates in the following constraint: extraction from any specifier a is disallowed
unless the extractee b is the specifier of a, i.e. the second dependent of a.

This can straightforwardly derive various CED effects, while allowing an ‘escape hatch’ for
exceptions to the CED. Adger further stipulates that direct object positions are not complements
of V, but rather specifiers of a higher functional category O. This makes a welcome prediction,
as extraction from a CP-object (now a specifier) is then ruled out, unless the moving element first
moves to Spec,C, thereby essentially deriving the CED and traditional SCM using a single rule.
Problems. But while Adger’s proposal sidesteps some of the uncertainties of phases, his assump-
tions now fail to predict at least three cases which are empirically observed: extraction from an
adjunct that has no specifier, extraction of multiple elements out of a specifier, and opaque specifier
edges. I review examples of each of these below. First, assuming that only specifiers of specifiers
can be extracted poses problems for PP adjuncts, which he treats as specifiers. In (1), Adger is
forced to posit that there is some larger structure within the PP which allows the PP object to
become a specifier of the adjoining category without violating anti-locality (Abels 2003).

(1) Whati did John cut the bread [P with i]?
Second, this kind of proposal would apparently also rule out iterative Ā- and A-movement across
clauses, e.g. in hyperraising in Brazilian Portuguese (2), as multiple elements would need to merge
as specifiers to C to escape the CP, which is itself presumably still the specifier of O.

(2) [Quais
which

livros]i
books

elas j
they

parecem
seem

[C ? que
that

j leram
read

i]

‘Which books do they seem to have read?’ (Kobayashi 2020:18)
Third, it has been generalized that left-branch extraction (LBE) is licit only in languages

without a definite DP layer in the nominal domain (Bošković 2005, et seq.). But LBE is also widely
disallowed in languages without definite articles, such as Malayalam. Interestingly, Malayalam
adnominals may Ā-move to the edge of NP/DP (3a). If the adnominal here is indeed at the edge,
then it is expected to be extractable, but this is not borne out (3b).

(3) a. rāman
¯R.

[bham. giyul.l.ai
beautiful

orŭ

i vı̄t.ŭ]
house

vaṅṅi
bought

‘Raman bought a beautiful house.’
b. *bham. giyul.l.ai

beautiful
rāman

¯R.
[i orŭ

i vı̄t.ŭ]
house

vaṅṅi
bought

‘Raman bought a beautiful house.’
Proposal. To summarize, while phases encounter some conceptual issues, Adger (2024)’s altern-
ative relies on distinctions between complements and specifiers to account for locality, which poses
empirical problems. I will suggest an alternative approach which reformulates Adger’s basic intu-
ition, while allowing sufficient flexibility to account for the three kinds of cases above. Following
Krivochen (2023), I will assume that Merge only takes atomic inputs, and generates dependencies

between them (notated 〈α, β〉), rather than a recursive set structure (4a). Each dependency is
pushed to a stack, which is represented as a graph (4c) rather than a tree (4b). On these assump-
tions, merging a dependent with a root node critically does not extend that root node, because
Merge does not create new nodes. Root nodes are simply nondependents with dependents of their
own, and therefore can only be extended by them becoming dependents of other nodes.

(4) a. Set = {X, {Y, {Z, W}}}
b. WP

XP W′

W′

W ZP

YP

c. Stack =

〈w, z 〉, 〈w, y 〉, 〈w, x 〉

w

x y z

3
2

1

This kind of approach construes hierarchy in terms of timing rather than constituency. Note also
that ‘workspaces’ are not separated from each other here; all dependencies within a sentence are
ordered relative to one another in a single stack. This requires that the dependencies that compose
the subderivation of a specifier/adjunct are absolutely ordered in relation to those composing
whatever they merge into. I propose that there is a general organizational principle like (5), which
in effect prevents the root of a subderivation from being extended after its host structure is built.

(5) The extension of the root node of a subderivation D1 cannot be interrupted by the extension
of the root node of another subderivation D2 and resumed later.

This necessitates that specifiers/adjuncts be built up to their root node as early as possible. Then,
the opacity of specifiers/adjuncts can be derived from the following locality constraint:

(6) Once a lower sister of a node α is found in a stack, any internal structure dominated by α
found lower in the stack is inaccessible to Merge.

So if 〈w, x 〉 immediately follows 〈w, y 〉, y is a lower sister of x, and nodes dominated by x (e.g. z)
are inaccessible to Merge (7a). Escapees from a specifier D1 are only accessible if they merge with
the root of D1 in a case where the root of D1 does not need to be extended, per (5), and the merge
site of D1 is fully ready, to avoid (6). We can thus reconfigure the escape hatch as follows: if 〈 x,
z 〉 intervenes in the stack between 〈w, y 〉 and 〈w, x 〉, only then is z accessible to extraction (7b).

(7) a. Stack =

〈 x, z 〉, 〈w, y 〉, 〈w, x 〉

w

x

z

y

3

1

2

→ not accessible to Merge

b. Stack =

〈w, y 〉, 〈 x, z 〉, 〈w, x 〉

w

x

z

y

3

2

1

→ accessible to Merge

Implications. The upshot is that these ‘stragglers’ escape through edges due to when they merge,
and not because the edges of specifiers are otherwise unique. If we accept the stipulation of the
functional category O, stragglers make the same basic prediction as Adger’s locality constraint
w.r.t. SCM, albeit in a different way: what allows extraction out of embedded CPs is not merging at
the edge of CP, but the point at which that merger occurs. And crucially, the three empirical cases
sketched above may now also be straightforwardly explained: (1) is predicted, because stragglers
don’t have to be specifiers, (2) is allowed, as there is no limit on the number of stragglers can
undergo SCM, and (3) is explained, if the adnominal is simply not merged as a straggler.

The resulting question then is why escape hatches are not uniform across languages. The
explanation is that whether these mergers can be delayed must be learned as part of a language’s
grammar. This may be surprising, but note that this is just a single diacritic, and more complex
ordering systems are commonly assumed (e.g. Müller 2010, Georgi 2014, Merchant 2019, a.m.o.).
Along these lines, the typological rarity of LBE is also expected because it is not only necessary
that a language allow adnominals to merge at the edge of the nominal domain, as in (3), but also
that the language has evolved an additional grammatical rule that allows the relevant element to
merge as a straggler. Thus, LBE is predicted to be typologically exceptional, rather than normative.

