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What do | mean by "language model"?

* Probabilistic models trained to have high predictive accuracy when predicting text data.

Probabilities
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SSM ) sleep .05
magically .02

* | will discuss language models that are unlike commercial systems like ChatGPT ("frontier models"):
e "Base models" (no additional training using reinforcement learning or fine-tuning)
 When possible, open-weight, open-source, open-training-data
e Substantially smaller than commercial systems (small enough to train/run on a laptop)

* Analysis of frontier models is interesting (e.g. Begus et al. 2025 have shown that they can draw accurate syntactic trees
for some challenging sentences), but not my focus here.
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* The neural architecture is highly flexible (not just an n-gram model!)

 For example, in principle, many architectures can implement a recognizer
for context-free languages (Korsky & Berwick, 2019)

* They can perform complex computations based on highly abstract features

 The question is what they actually do when trained to predict text.
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What do | mean by "language model"?
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 These are the only known artificial systems that can process natural language
to the level of being able to have nontrivial interactions with humans.



Topics

What can such models tell us in principle?
Evidence for Linguistic Structure in LMs
Learning and Representation

Conclusion



Example: Neural Networks In Vision

* Neural networks are loosely inspired by brain architecture.

 Perhaps: LMs are just not like the human brain, so they are irrelevant to
human linguistic cognition, or no more relevant than airplanes (engineering
artifact that flies) are to ornithology (study of biological organisms that fly).

 Counterexample: Despite these limitations, neural networks have played a
central role in our developing understanding of visual cognition.




Visual Cognition




Neural Networks in Vision
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Receptive fields derived by training neural networks to predict
natural images (Bell et al., 1997)
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Receptive fields in macaque early visual cortex First-layer "receptive fields" in AlexNet, trained on image
(Zylberberg et al., 2011) classification (Krizhevsky et al., 2012)

Cao & Yamins (2024)



Vision Example

* Neural models contributed to an explanatory account of edge detection in
vision
 Edge detection is the result of (1) the function of vision, (2) the statistics
of visual input, (3) general principles of efficient information processing.
* They did so despite not capturing all of visual cognition (Bowers et al., 2022 BBS).

 We have argued that LMs can contribute to linguistics similarly
(Futrell & Mahowald, 2026 [to appear in BBS)).

* Not as replacements or proxies for models of linguistic cognition

 Rather as comparative systems where we are conscious that they share
some properties with humans but not others

 Here | will be presenting some pieces of the larger argument in that paper.



Key Positions

 LMs do not replace or supplant linguistic theories (contra Piantadosi, 2023),

which provides the best known formal characterization of human linguistic
competence.

e But they do inform questions of linguistic interest, by serving as systems that

1. Demonstrate what is possible in a system not limited to that
characterization.

e 2. Generate hypotheses for neural representation of linguistic structures.

* 3. Demonstate ways of thinking about learning and representation that might
be new to formal linguists.
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Behavioral Assessment
of Linguistic Structure
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Grammaticality is not Probability

(1) Colorless green ideas sleep furiously. » GPT-2 » D ~ 2-90

(2) * Furiously sleep ideas green colorless. > GPT-2 , D~ 293

* Snails died the old. > GPT-2 . D~ 2-49

The ancient crustaceans expired. > GPT-2 > p ~ 255

“Flavorless sour thoughts dream angrily”
vs. "“Angrily dream thoughts sour flavorless”™ 13 Chomsky (1957); Wilcox, Futrell & Levy (2024)



But Probability Gives Evidence for Grammaticality

Grammatical rules
of English | |
Reaction Times

% Acceptability Ratings

> P(Colorless green thoughts...)
Comprehension Accuracy

v
/ Subjective Judgments
Repetition Accurac
Performance P y
constraints

Plausibility

14 Wilcox, Futrell & Levy (2024)
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Evaluation Using Minimal Pairs

/\
The keys to the cabinets are rusty. > GPT-2 N
1 AP(grammatic.al) 395
P(ungrammatical)
/\ M x
The key to the cabinets are rusty. > GPT-2 /

Linzen et al. (2016), Futrell et al. (2019), Hu et al. (2020); Wilcox, Futrell & Levy (2024)



Sentences like: The {key/keys} to the old cabinets {is/are} ...

B. Matching verb, varying context

P(verb | context) under GPT-2

O —

O

-12
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Example Results
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There Is no global probability
threshold for grammaticality, nor
would we expect there to be

according to probability theory

(Hu, Wilcox, Song, Mahowald & Levy, 2026
TACL)

Nevertheless, the ungrammatical
paired sentences get
systematically lower probability.

We use a large number of different
sentences so that the idiosyncratic
properties of individual sentences
for the LM wash out.

Marvin & Linzen (2018); Hu et al. (2020); Gauthier et al. (2020); Futrell & Mahowald (2026)



Targeted Syntactic Evaluation: Wh-Dependencies

What (+Filler)

what devoured NP

\
\

+gap I know what the lion devoured

That (-Filler)

that devoured NP

\
\

*I know that the lion devoured

yesterday. yesterday.
NP/>\ NP/>\
| |
what devoured NP that devoured NP

: |
\

Ve X the gazelle
|

-gap *I know what the lion devoured

the gazelle yesterday.

K |
\
\
\ the gazelle
v ;

~
-
-~ -

il

I know that the lion devoured

the gazelle yesterday.

Figure 1: Schematic demonstrating our 2 X 2 interaction design for measuring the

filler-gap dependency. The portion of the sentence in which we measure surprisal is

underlined.
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Basic Filler-Gap Licensing
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Figure 4: Basic Licensing. If models are learning the filler-gap dependency, we expect

negative wh-effect in the +gap condition (blue bars) and a positive wh-effect in the

-gap condition (red bars).

Wilcox, Futrell & Levy (2024)



Targeted Syntactic Evaluation: Island Constraints

control: | know what the librarian placed _ on the wrong shelf.
iIsland: *I know what the patron got mad after the librarian placed _ on the wrong shelf.

Wh-Effect

o
o

N
4}
) |

O
o

o
(@)

Adjunct Islands

Filler-Gap Dependency

Adjunct Islands

GPT2 GPT3 GRNN JRNN NGRAM
= | | | -
control island control Island control island control island control island
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Targeted Syntactic Evaluation: Island Constraints

control: | know what the librarian placed _ on the wrong shelf.

Adjunct Islands
iIsland: *I know what the patron got mad after the librarian placed _ on the wrong shelf.

control: | know what the actress bought _ yesterday.

Complex NP Islands
Island: *| know what the actress bought the painting that depicted _ yesterday.

control: | know what the man bought _ at the antique shop.

Coordination Islands
iIsland: *| know what the man bought _ and the painting at the antique shop.

control: | know how expensive a car you bought _ last week.

Left Branch Islands
Island: *I know how expensive you bought _ car last week

control: | know who the seniors defeated _ last week. Sentential Subject Islands
Island: *I know who for the seniors to defeat _ will be trivial.

control: | know what _ fetched a high price.

Subject Islands
Island: *I know who the painting by _ fetched a high price.

* Not that-trace effects, not parasitic gaps

19 Wilcox, Futrell & Levy (2024)



Targeted Syntactic Evaluation: Island Constraints

e Qur conclusion in Wilcox, Futrell & Levy (2024: 37): "Our tests reveal
that these weakly biased models acquire impressively sophisticated
generalizations regarding the filler-gap dependency and island
constraints from even a childhood’s quantity of linguistic input, though
INn some cases we find acquisition failures.”

* Convergent with other modeling approaches showing that island
constraints may be acquirable from non-language-specific learning
principles (Pearl & Sprouse, 2013; Legate & Yang, 2024; Dickson, 2025)

 Lan, Chemla & Katzir (2024, LI) claim further failures on parasitic gaps
and ATB movement.

20



Further Filler-Gap Complexities

 Lan, Chemla & Katzir (2024, L) claim further failures on parasitic gaps and
ATB movement.

e Our response:

e 1. If there were failure here, even then it would not undermine our claim that
the models learned the filler-gap depedency and island constraints.

o Syntactic frameworks differ in the extent to which ATB and parasitic
gaps involve different theoretical machinery beyond the basic wh-
dependency.

* |sland constraints have famously gone through many different formal
explanations (A-over-A constraint; subjacency; barriers; grammaticalized
processing constraints). So we should be conservative when we want to
claim that failure to learn one aspect of the wh-dependency weakens
claims of learning another.

21



Further Filler-Gap Complexities

* Following up, Lan, Chemla, & Katzir (2024, LI) argue for further
acquisition failures for ATB movement and parasitic gaps.

e QOur response:

e 2. Even then, the results are
not obviously failures.

* |f these were reading time results,
following psycholinguistic methods,
we would conclude that there
IS evidence that the dependency.

22
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Figure 6

Model accuracy on the difference-in-differences condition for the parasitic gap (PG) and across-the-board
(ATB) datasets. Accuracy is measured as the ratio of cases where A 4., > A _ g, that is, when the model
shows a relative higher preference for a gap when the gap follows a filler than when it does not.
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Why evaluate this way?

 Why not just ask the model whether something is grammatical and why?
(Leivada et al., 2023; Begus et al., 2025; ...)

* 1. This probes only meta-linguistic awareness -- interesting but not
the key question.

e 2. LM explanations are not faithful adsen, chandar & Reddy, 2024

* There Is a better way...

24



Probing for Syntactic Structure

 (Open) LMs are glass boxes: we can see their internal computations.
 The question is how to interpret what we find.

 Mechanistic interpretability has made large advances In
understanding why models behave as they do.

e Syntactic relations and features are .
represented through geometric relations B ..
among high-dimensional vectors that — g,/
represent words in context Hewitt & Manning, 2020; ’._,.":,,',:.--° 7 -
Eisape et al., 2022; Diego-Simon et al. 2024, 2025; Arora et al., 2024; L <

many others)
The
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Syntactic Structure in LMs

* For example, Diego-Simon
et al (2024) look at syntactic
dependency relations and
find

* Vectors for tokens linked
INn syntactic dependencies
have certain geometric
relationships with each
other.

* The angle between them
encodes the syntactic
features involved in the
dependency.

Dependency trees

obj
ﬂet\ @ @
The cat chases the mouse The

Pr, Obe s paCe

mouse

the/ T

chases = cat

Polar Probe

20

nsubj

nmod obj
det S€ det

cats

in cities chase the mice

P
Obe spaCe
A
mice
the T
chase - cats \
The cities
in
><' . ‘ >
n-dimensiona | space

Diego-Simon et al. (2024, NeurlPS)



Syntactic Structure in LMs

A

Main Phrase + Relative Clause

The

book

 The revealed parses are
not always perfect.

fascinates

e lascinates
gacher

teacher

my

 But they do capture
nontrivial hierarchical B
and recursive structure.

Predicted

27 Diego-Simon et al. (2024, NeurlPS)



Manipulating Syntactic Structure in LMs
* These representations of syntactic structure and features are causally
active in determining what the model outputs, and they are abstract.

 For example: you can find the high-
dimensional vector corresponding to the et runeimetiscsedE -

< = Monolingual Features O

feature "plural" on a subject noun in English.

lish I
. If you go into the network and add this Cmewee 1 [alL
vector in, you can change the output verb S —— ' b llm
form. R |
temenager. {0 (nll

® [he same vector also works to change
verb forms in other languages!

28 Brinkmann et al. (2025, ACL)



Syntactic Structure in LMs

 Neural LMs learn enough abstract, hierarchical linguistic structure to be
interesting comparative systems for linguistics.

* Further experiments and probes are needed, and syntacticians have much to
contribute!

* All the mechanisms | described are viable hypotheses for how these structures
are Implemented in the brain, or any brain-like system.

 Whether or not the brain learns them, or they are built in!

 They show how syntactic structures do not have to be discrete and symbolic;
they can be continuous and vector-valued.

29
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How to Learn from Data

Data

The key is pretty.

Are the keys pretty?

The man is happy.

The man who is tall is happy.

The keys are pretty.

I like the keys to the cabinet.

Is the man happy?
I like the man who is tall.

Hypothesis 1

Hypothesis 2

/TN

The keys to the cabinet are ...

/TN

Is the man who is tall _ happy?

— ‘“\

v A\
The keys to the cabinet is ...

R

N

Is the man who _ tall is happy?

Both hypotheses are equally consistent with the data.

To arrive at Hypothesis 1, not Hypothesis 2, you need an inductive bias (a.k.a. the "evaluation measure"
from Chomsky, 1965: 31-37), Which Is not present in the data.

This logic is not in dispute. The question is: What is the nature of that bias?

Both for humans, and for LMs!

Futrell & Mahowald (2026)



Inductive Bias Requires Restriction?

e Usual Solution: Your learner must be restricted
to only consider certain hypotheses. ppens | Hypothesis 2

o The Iearner represents IlﬂgU|St|C InpUt US|ng The keys to the cabinet are ... The keys to the cab{net 1s

an innate formal system, specific to
language and based on hierarchical m

structure, that cannot even form the
non-hierarchical representations (Chomsky, 1965, 1971, 1981).

R

77N

Is the man who is tall _ happy? Is the man who _ tall is happy?

* A linguistic formalism (like Minimalist Grammars) is meant to model such a
system.

 LMs provide an alternative view of how inductive bias can work.

32 Futrell & Mahowald (2026)
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Inductive Bias from a Simplicity Bias

Large neural networks learn more effectively when their hypothesis space is /less restricted wilson, 2025)
They have an implicit simplicity bias that gives them a soft inductive bias.
The inductive bias comes from many sources, not only the architecture.

* You can think of it as minimizing a description length (eg, Huang et al., 2025), but this is not always
helpful.

A. Flexible Uniform Bias B. Restriction Bias C. Flexible Soft Bias

m Bad generalization @ Good generalization @ - % Learner's trajectory
Wilson (2025)



Learning and Linguistic Theory

e Traditional Approach: Learners need a restrictive theory of mental
representations, and linguistic theories are such theories

 Modern Machine Learning Outlook: A restricted hypothesis space is less
important than a simplicity metric wiison, 2025

* For linguistics: "Explanation through constrained description” is not
the only valid approach to explanatory adequacy Haspeimath, 2008)

e |tis not bad if a linguistic formalism "overgenerates" grammars (eg,

alleged Turing-completeness of HPSG) as long as you can define an
appropriate simplicity metric

 There are many possible soft biases that can help learning

34



Inductive Bias in LMs

* To the extent that LMs do form linguistic generalizations, it must be

because they have some inductive bias which is aligned in some way
with the structure of language

 One way to find out what that bias is is to ask how well they learn
artificial languages, including "impossible” languages

35



Learning Languages with Disrupted Structure

*Hop languages perturb verb inflection
using counting rules

Kallini, Papadimitriou, Futrell, Mahowald & Potts (2024, ACL)
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Learning Languages with Disrupted Structure

*Hop languages perturb verb inflection

using counting rules

1. NoHoP

He clean

his very messy bookshelf .

Kallini, Papadimitriou, Futrell, Mahowald & Potts (2024, ACL)



Learning Languages with Disrupted Structure
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Learning Languages with Disrupted Structure
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Learning Languages with Disrupted Structure
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Learning Languages with Disrupted Structure
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Impossible Languages: Complications

o Subsequently, Ziv et al. (2025) and Yang et al. (2025) report some impossible
languages that seem easier to learn than real ones.

* Also, Hunter (2025) claims we do not properly control hierarchical vs. non-
hierarchical languages.

e | think a collaboration to find a pair of "languages”, one hierarchical and
one not, controlled for statistical properties, would be fruitful.

* A number of simple suggestions (like languages from the fMRI experiments
by Musso et al., 2003) have problems.

* Also, it is not clear how hierarchical structure formally rules out things like

*

Op-

48



Impossible Languages: Upshot

* [he experiments show some inductive bias in LMs which is partially aligned with
language, although weaker than human learners (vang et al., 2025)

 We think part of that inductive bias is information locality: a tendency for related
elements to be close (Futrell et al., 2020; Mansfield & Kemp, 2023; Someya et al., 2025)

 Matches ideas from the functional typological literature: It is a statistical version of
Hawkins' (2004) principle of Minimize Domains, used to explain Greenbergian
word order universals

* In LMs, arises from the function (predicting next word), not the architecture
(Transformer)

* |In humans, hypothesized to arise from pressures of incremental processing
(production, comprehension, parsing) (Gibson, 1998; Futrell et al., 2020; Hahn, Jurafsky & Futrell, 2020)

 More generally, ideas from the functionalist literature seem to match what LMs do...
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LMs are a proof of concept for linguistic
representations that are less discrete and categorical

Word meanings: Represented as vectors encoding statistics of usage patterns (Erk, 2012, Potts, 2019) rather than as
discrete predicates (Heim & Kratzer, 1998).

The Category Squish: Endstation Hauptwort*

Syntactic categories: Syntactic categories in LMs are TR S —
fuzzy and exist in a space of functions (Ross, 1972, A M.ILT.
. (1) egse er assive
Com”e, 1989, Croft & POOle, 2008) 1 Yerd > g:rzigzple o gargig:ple‘> gaitic’iple ~ Adjective >
* For example: LMs have a crosslinguistic feature for Preposition(7) > [ SOISEEtIAl o, snap) ™ Noun
‘grammatical subject’, but passive subjects are less o A e
subject-y" than active subjects (Papadimitriou et al., 2021). inreinn e.che cardinal vowels in the vowel space. The dis-

Compositionality: Neural networks naturally capture gradient compositionality.

 For example "green tea" is more compositional than "green thumb”

but /ess than "green car" (Baroni et al., 2014). Neural nets represent compositional meanings, but they do not require
a discrete compositional vs. non-compositional distinction.

Linguistic levels: Linguistic levels (phonology, morphology, syntax, semantics) are represented in different layers of
neural networks, but softly and not strictly (Belinkov, 2018).

* As we find in psycholinguistics, where information from multiple layers can be combined flexibly in real-time
processing.
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Key Positions

 LMs do not replace or supplant linguistic theory.
* But they do inform questions of linguistic interest, by serving as systems that

1. Demonstrate what is possible in a system that is not limited to certain
formal structures.

o 2. Generate hypotheses for neural representation of linguistic structures.

* 3. Demonstate ways of thinking about /learning and representation that
might be new to formal linguists

 They open up the range of ideas and formal devices for linguistic theory.



Conclusions

* Linguistically informed computational work on LMs is already taking place
within linguistics departments, where computational researchers are working
alongside syntacticians, semanticists, phonologists, language documentation

experts, sociocultural linguistics, and experts in a wide variety of languages
and language families.

* This is an exciting time for linguistics!
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