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• Probabilistic models trained to have high predictive accuracy when predicting text data. 
 

 

 

 

 

 

 

 

 

 

 

• I will discuss language models that are unlike commercial systems like ChatGPT ("frontier models"):


• "Base models" (no additional training using reinforcement learning or fine-tuning)


• When possible, open-weight, open-source, open-training-data 


• Substantially smaller than commercial systems (small enough to train/run on a laptop)


• Analysis of frontier models is interesting (e.g. Beguš et al. 2025 have shown that they can draw accurate syntactic trees 
for some challenging sentences), but not my focus here.

What do I mean by "language model"?
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• The neural architecture is highly flexible (not just an n-gram model!)


• For example, in principle, many architectures can implement a recognizer 
for context-free languages (Korsky & Berwick, 2019)


• They can perform complex computations based on highly abstract features


• The question is what they actually do when trained to predict text.

What do I mean by "language model"?
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• These are the only known artificial systems that can process natural language 
to the level of being able to have nontrivial interactions with humans.

What do I mean by "language model"?



Topics
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• What can such models tell us in principle?


• Evidence for Linguistic Structure in LMs


• Learning and Representation


• Conclusion



Example: Neural Networks in Vision

• Neural networks are loosely inspired by brain architecture.


• Perhaps: LMs are just not like the human brain, so they are irrelevant to 
human linguistic cognition, or no more relevant than airplanes (engineering 
artifact that flies) are to ornithology (study of biological organisms that fly). 

• Counterexample: Despite these limitations, neural networks have played a 
central role in our developing understanding of visual cognition.



Visual Cognition



Receptive fields in macaque early visual cortex  
 (Zylberberg et al., 2011)

Receptive fields derived by training neural networks to predict 
natural images (Bell et al., 1997)

Cao & Yamins (2024)

First-layer "receptive fields" in AlexNet, trained on image 
classification (Krizhevsky et al., 2012)

Neural Networks in Vision



Vision Example

• Neural models contributed to an explanatory account of edge detection in 
vision


• Edge detection is the result of (1) the function of vision, (2) the statistics 
of visual input, (3) general principles of efficient information processing.


• They did so despite not capturing all of visual cognition (Bowers et al., 2022 BBS).


• We have argued that LMs can contribute to linguistics similarly  
(Futrell & Mahowald, 2026 [to appear in BBS]).


• Not as replacements or proxies for models of linguistic cognition


• Rather as comparative systems where we are conscious that they share 
some properties with humans but not others


• Here I will be presenting some pieces of the larger argument in that paper.



Key Positions

• LMs do not replace or supplant linguistic theories (contra Piantadosi, 2023), 
which provides the best known formal characterization of human linguistic 
competence.


• But they do inform questions of linguistic interest, by serving as systems that


• 1. Demonstrate what is possible in a system not limited to that 
characterization.


• 2. Generate hypotheses for neural representation of linguistic structures.


• 3. Demonstate ways of thinking about learning and representation that might 
be new to formal linguists.



Topics

11

• What can such models tell us in principle?


• Evidence for Linguistic Structure in LMs


• Learning and Representation


• Conclusion
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Grammaticality is not Probability
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*

“Flavorless sour thoughts dream angrily”

vs. *“Angrily dream thoughts sour flavorless”

GPT-2

GPT-2

p ~ 2-90

p ~ 2-93

𝑃(some grammatical sentence) > 𝑃(some ungrammatical string)?

Chomsky (1957); Wilcox, Futrell & Levy (2024)

* Snails died the old.

The ancient crustaceans expired.

GPT-2

GPT-2

p ~ 2-49

p ~ 2-55



But Probability Gives Evidence for Grammaticality

14

𝑃(Colorless green thoughts…)

Grammatical rules  
of English

Plausibility

Performance  
constraints

Reaction Times 
Acceptability Ratings 
 

Comprehension Accuracy 
Subjective Judgments  
Repetition Accuracy 
…

Wilcox, Futrell & Levy (2024)



Evaluation Using Minimal Pairs

15 Linzen et al. (2016), Futrell et al. (2019), Hu et al. (2020); Wilcox, Futrell & Levy (2024)

The keys to the cabinets are rusty.

* The key to the cabinets are rusty.

P(grammatical)

P(ungrammatical)
≈ 3.25

GPT-2

GPT-2



Example Results

16 Marvin & Linzen (2018); Hu et al. (2020); Gauthier et al. (2020); Futrell & Mahowald (2026)

Sentences like: The {key/keys} to the old cabinets {is/are} ...

• There is no global probability 
threshold for grammaticality, nor 
would we expect there to be 
according to probability theory  
(Hu, Wilcox, Song, Mahowald & Levy, 2026 
TACL)


• Nevertheless, the ungrammatical 
paired sentences get 
systematically lower probability.


• We use a large number of different 
sentences so that the idiosyncratic 
properties of individual sentences 
for the LM wash out.



Targeted Syntactic Evaluation: Wh-Dependencies

Wilcox, Futrell & Levy (2024)17



Targeted Syntactic Evaluation: Island Constraints

Wilcox, Futrell & Levy (2024)18

control: I know what the librarian placed _ on the wrong shelf. 

island: *I know what the patron got mad after the librarian placed _ on the wrong shelf.
Adjunct Islands



Targeted Syntactic Evaluation: Island Constraints

Wilcox, Futrell & Levy (2024)19

• Not that-trace effects, not parasitic gaps

control: I know what the librarian placed _ on the wrong shelf. 

island: *I know what the patron got mad after the librarian placed _ on the wrong shelf.
Adjunct Islands

control: I know what the actress bought _ yesterday. 

island: *I know what the actress bought the painting that depicted _ yesterday.
Complex NP Islands

Coordination Islandscontrol: I know what the man bought _ at the antique shop. 

island: *I know what the man bought _ and the painting at the antique shop.

Left Branch Islandscontrol: I know how expensive a car you bought _ last week. 

island: *I know how expensive you bought _ car last week

Sentential Subject Islandscontrol: I know who the seniors defeated _ last week. 

island: *I know who for the seniors to defeat _ will be trivial.

Subject Islandscontrol: I know what _ fetched a high price. 

island: *I know who the painting by _ fetched a high price.



Targeted Syntactic Evaluation: Island Constraints

20

• Our conclusion in Wilcox, Futrell & Levy (2024: 37): "Our tests reveal 
that these weakly biased models acquire impressively sophisticated 
generalizations regarding the filler-gap dependency and island 
constraints from even a childhood’s quantity of linguistic input, though 
in some cases we find acquisition failures."


• Convergent with other modeling approaches showing that island 
constraints may be acquirable from non-language-specific learning 
principles (Pearl & Sprouse, 2013; Legate & Yang, 2024; Dickson, 2025)


• Lan, Chemla & Katzir (2024, LI) claim further failures on parasitic gaps 
and ATB movement.



Further Filler-Gap Complexities

21

• Lan, Chemla & Katzir (2024, LI) claim further failures on parasitic gaps and 
ATB movement. 


• Our response:


• 1. If there were failure here, even then it would not undermine our claim that 
the models learned the filler-gap depedency and island constraints.


• Syntactic frameworks differ in the extent to which ATB and parasitic 
gaps involve different theoretical machinery beyond the basic wh-
dependency.


• Island constraints have famously gone through many different formal 
explanations (A-over-A constraint; subjacency; barriers; grammaticalized 
processing constraints). So we should be conservative when we want to 
claim that failure to learn one aspect of the wh-dependency weakens 
claims of learning another.



Further Filler-Gap Complexities

22

• Following up, Lan, Chemla, & Katzir (2024, LI) argue for further 
acquisition failures for ATB movement and parasitic gaps.


• Our response:


• 2. Even then, the results are  
not obviously failures.


• If these were reading time results,  
following psycholinguistic methods,  
we would conclude that there 
is evidence that the dependency.
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Why evaluate this way?

24

• Why not just ask the model whether something is grammatical and why? 
(Leivada et al., 2023; Beguš et al., 2025; ...)


• 1. This probes only meta-linguistic awareness -- interesting but not 
the key question.


• 2. LM explanations are not faithful (Madsen, Chandar & Reddy, 2024)


• There is a better way...



Probing for Syntactic Structure

25

• (Open) LMs are glass boxes: we can see their internal computations.


• The question is how to interpret what we find.


• Mechanistic interpretability has made large advances in 
understanding why models behave as they do.


• Syntactic relations and features are  
represented through geometric relations  
among high-dimensional vectors that  
represent words in context (Hewitt & Manning, 2020;  

Eisape et al., 2022; Diego-Simon et al. 2024, 2025; Arora et al., 2024;  
many others)



Syntactic Structure in LMs

26 Diego-Simón et al. (2024, NeurIPS)

• For example, Diego-Simón 
et al (2024) look at syntactic 
dependency relations and 
find


• Vectors for tokens linked 
in syntactic dependencies 
have certain geometric 
relationships with each 
other.


• The angle between them 
encodes the syntactic 

features involved in the 
dependency.



Syntactic Structure in LMs

27 Diego-Simón et al. (2024, NeurIPS)

• The revealed parses are 
not always perfect.


• But they do capture 
nontrivial hierarchical 
and recursive structure.



Manipulating Syntactic Structure in LMs

28

• These representations of syntactic structure and features are causally 

active in determining what the model outputs, and they are abstract.

• For example: you can find the high-
dimensional vector corresponding to the 
feature "plural" on a subject noun in English.


• If you go into the network and add this 
vector in, you can change the output verb 
form.


• The same vector also works to change 
verb forms in other languages!

Brinkmann et al. (2025, ACL)



Syntactic Structure in LMs

29

• Neural LMs learn enough abstract, hierarchical linguistic structure to be 
interesting comparative systems for linguistics.


• Further experiments and probes are needed, and syntacticians have much to 
contribute!


• All the mechanisms I described are viable hypotheses for how these structures 
are implemented in the brain, or any brain-like system.


• Whether or not the brain learns them, or they are built in!


• They show how syntactic structures do not have to be discrete and symbolic; 
they can be continuous and vector-valued.



Topics
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• What can such models tell us in principle?


• Evidence for Linguistic Structure in LMs


• Learning and Representation


• Conclusion



• Both hypotheses are equally consistent with the data.


• To arrive at Hypothesis 1, not Hypothesis 2, you need an inductive bias (a.k.a. the "evaluation measure" 

from Chomsky, 1965: 31-37), which is not present in the data. 

• This logic is not in dispute. The question is: What is the nature of that bias? 

• Both for humans, and for LMs!

How to Learn from Data

31 Futrell & Mahowald (2026)



Inductive Bias Requires Restriction?

32

• Usual Solution: Your learner must be restricted 
 to only consider certain hypotheses.


• The learner represents linguistic input using 
an innate formal system, specific to  
language and based on hierarchical  
structure, that cannot even form the  
non-hierarchical representations (Chomsky, 1965, 1971, 1981). 


• A linguistic formalism (like Minimalist Grammars) is meant to model such a 
system.


• LMs provide an alternative view of how inductive bias can work.

Futrell & Mahowald (2026)



Inductive Bias from a Simplicity Bias

33 Wilson (2025)

• Large neural networks learn more effectively when their hypothesis space is less restricted (Wilson, 2025)


• They have an implicit simplicity bias that gives them a soft inductive bias.


• The inductive bias comes from many sources, not only the architecture.


• You can think of it as minimizing a description length (eg, Huang et al., 2025), but this is not always 
helpful.



Learning and Linguistic Theory

34

• Traditional Approach: Learners need a restrictive theory of mental 
representations, and linguistic theories are such theories


• Modern Machine Learning Outlook: A restricted hypothesis space is less 
important than a simplicity metric (Wilson, 2025)


• For linguistics: "Explanation through constrained description" is not 
the only valid approach to explanatory adequacy (Haspelmath, 2008)


• It is not bad if a linguistic formalism "overgenerates" grammars (eg, 
alleged Turing-completeness of HPSG) as long as you can define an 
appropriate simplicity metric


• There are many possible soft biases that can help learning



Inductive Bias in LMs

35

• To the extent that LMs do form linguistic generalizations, it must be 
because they have some inductive bias which is aligned in some way 
with the structure of language


• One way to find out what that bias is is to ask how well they learn 
artificial languages, including "impossible" languages



*Hᴏᴘ languages perturb verb inflection 

using counting rules

Kallini, Papadimitriou, Futrell, Mahowald & Potts (2024, ACL)

Learning Languages with Disrupted Structure



*Hᴏᴘ languages perturb verb inflection 

using counting rules 

1. NoHᴏᴘ 

He cleans his very messy bookshelf.

Kallini, Papadimitriou, Futrell, Mahowald & Potts (2024, ACL)

Learning Languages with Disrupted Structure
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*Hᴏᴘ languages perturb verb inflection 

using counting rules 

1. NoHᴏᴘ 

He cleans  his very messy bookshelf.

verb marker 

token

Kallini, Papadimitriou, Futrell, Mahowald & Potts (2024, ACL)

Learning Languages with Disrupted Structure
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Impossible Languages: Complications

48

• Subsequently, Ziv et al. (2025) and Yang et al. (2025) report some impossible 
languages that seem easier to learn than real ones.


• Also, Hunter (2025) claims we do not properly control hierarchical vs. non-
hierarchical languages.


• I think a collaboration to find a pair of "languages", one hierarchical and 
one not, controlled for statistical properties, would be fruitful.


• A number of simple suggestions (like languages from the fMRI experiments 
by Musso et al., 2003) have problems.


• Also, it is not clear how hierarchical structure formally rules out things like 
*Hop.



Impossible Languages: Upshot

49

• The experiments show some inductive bias in LMs which is partially aligned with 
language, although weaker than human learners (Yang et al., 2025)


• We think part of that inductive bias is information locality: a tendency for related 
elements to be close (Futrell et al., 2020; Mansfield & Kemp, 2023; Someya et al., 2025)


• Matches ideas from the functional typological literature: It is a statistical version of 
Hawkins' (2004) principle of Minimize Domains, used to explain Greenbergian 
word order universals


• In LMs, arises from the function (predicting next word), not the architecture 
(Transformer)


• In humans, hypothesized to arise from pressures of incremental processing 
(production, comprehension, parsing) (Gibson, 1998; Futrell et al., 2020; Hahn, Jurafsky & Futrell, 2020)


• More generally, ideas from the functionalist literature seem to match what LMs do...



LMs are a proof of concept for linguistic 

representations that are less discrete and categorical

50

• Word meanings: Represented as vectors encoding statistics of usage patterns (Erk, 2012, Potts, 2019) rather than as 
discrete predicates (Heim & Kratzer, 1998).


• Syntactic categories: Syntactic categories in LMs are  
fuzzy and exist in a space of functions (Ross, 1972,  
Comrie, 1989, Croft & Poole, 2008). 


• For example: LMs have a crosslinguistic feature for  
"grammatical subject", but passive subjects are less  
"subject-y" than active subjects (Papadimitriou et al., 2021). 


• Compositionality: Neural networks naturally capture gradient compositionality.


• For example "green tea" is more compositional than "green thumb"  
but less than "green car" (Baroni et al., 2014). Neural nets represent compositional meanings,  but they do not require 
a discrete compositional vs. non-compositional distinction.


• Linguistic levels: Linguistic levels (phonology, morphology, syntax, semantics) are represented in different layers of 
neural networks, but softly and not strictly (Belinkov, 2018). 

• As we find in psycholinguistics, where information from multiple layers can be combined flexibly in real-time 
processing.
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• What can such models tell us in principle?


• Evidence for Linguistic Structure in LMs


• Learning and Representation


• Conclusion



Key Positions

• LMs do not replace or supplant linguistic theory.


• But they do inform questions of linguistic interest, by serving as systems that


• 1. Demonstrate what is possible in a system that is not limited to certain 
formal structures.


• 2. Generate hypotheses for neural representation of linguistic structures.


• 3. Demonstate ways of thinking about learning and representation that 
might be new to formal linguists 


• They open up the range of ideas and formal devices for linguistic theory.



53

• Linguistically informed computational work on LMs is already taking place 
within linguistics departments, where computational researchers are working 
alongside syntacticians, semanticists, phonologists, language documentation 
experts, sociocultural linguistics, and experts in a wide variety of languages 
and language families.


• This is an exciting time for linguistics!

Conclusions
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