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Stochastic parrots? A refutation of generative linguistics?
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Science vs engineering: flying

Relevance?

The biplane theory

The proxy view
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Scientific explanation: a reminder

Inference to the best explanation (ITTBE)

Science aims to explain, not to approximate surface
frequencies

Laws are isolatable parts of best explanations

A law might hold but be obscured on the surface

5 / 36



Scientific explanation: a reminder

Inference to the best explanation (ITTBE)

Science aims to explain, not to approximate surface
frequencies

Laws are isolatable parts of best explanations

A law might hold but be obscured on the surface

One statement of ITTBE

arg min
H∈H

|H|+ |D : H|
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A first step toward explaining human linguistic cognition

Discrete unboundedness

A turtle is dancing on the roof

6 / 36



A first step toward explaining human linguistic cognition

Discrete unboundedness

A flying turtle is dancing on the roof

6 / 36



A first step toward explaining human linguistic cognition

Discrete unboundedness

A flying turtle is dancing angrily on the roof

6 / 36



A first step toward explaining human linguistic cognition

Discrete unboundedness

A flying turtle is dancing angrily on the roof or a three-tailed zebra is
sitting in the corner

6 / 36



A first step toward explaining human linguistic cognition

Discrete unboundedness

If a flying turtle is dancing angrily on the roof or a three-tailed zebra is
sitting in the corner then it is going to snow

6 / 36



A first step toward explaining human linguistic cognition

Discrete unboundedness

Kim claims that if a flying turtle is dancing angrily on the roof or a
three-tailed zebra is sitting in the corner then it is going to snow

6 / 36



A first step toward explaining human linguistic cognition

Discrete unboundedness

Kim claims that if a flying turtle is dancing angrily on the roof or a
three-tailed zebra is sitting in the corner then it is going to snow . . .

6 / 36



A first step toward explaining human linguistic cognition

Discrete unboundedness

Kim claims that if a flying turtle is dancing angrily on the roof or a
three-tailed zebra is sitting in the corner then it is going to snow . . .

6 / 36



A first step toward explaining human linguistic cognition

Discrete unboundedness

Kim claims that if a flying turtle is dancing angrily on the roof or a
three-tailed zebra is sitting in the corner then it is going to snow . . .

6 / 36



A first step toward explaining human linguistic cognition

Discrete unboundedness

Kim claims that if a flying turtle is dancing angrily on the roof or a
three-tailed zebra is sitting in the corner then it is going to snow . . .

The Computational Hypothesis

Certain aspects of the linguistic competence of a native speaker of a
language can be characterized as a computer program.
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What everyone can agree on

Reverse engineering human linguistic cognition

If part of linguistic competence is a computer
program, we can try to figure out this program and
reverse-engineer the computer on which it is run
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If part of linguistic competence is a computer
program, we can try to figure out this program and
reverse-engineer the computer on which it is run

Core parts of the computer

Programming language

Learning algorithm

Processing mechanisms

. . .

Universal Grammar

All humans are born with the same programming
language and learning algorithm
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Language models
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Artificial neural networks
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BULLETIN OF 

MATHEMATICAL BIOPHYSICS 

VOLUME 5, 1943 

A LOGICAL CALCULUS OF THE 

IDEAS  IMMANENT IN NERVOUS ACTIVITY 

WARREN S. MCCULLOCH AND WALTER PITTS 

FROM THE UNIVERSITY OF ILLINOIS, COLLEGE OF MEDICINI~, 

DEPARTMENT OF PSYCHIATRY AT THE ILLINOIS NEUROPSYCHIATRIC INSTITUTE, 

AND THE UNIVERSITY OF CHICAGO 

Because  of the  "a l l - o r- n o n e " character of nervous  activity, neural 
events and the  re la tions  among them can be trea ted by means of propo- 
sitional log ic . It is  found  tha t the  behavior of every net can be described 
in  these  te rms , with the  addition of more complicated log ica l means for 
nets containing circles; and that for any log ica l expression satisfying 
certain conditions, one can find  a net behaving in  the  fa s h ion  it describes. 
It is  shown tha t many particular choices among possible neurophysiologi- 
cal assumptions are equivalent, in  the  sense tha t for every net behav- 
ing  under one assumption, there  exists another net which behaves un- 
der the  other and gives the  same results , although perhaps not in  the  
same time . Va rious  applications of the  calculus are discussed. 

I.  In troduction  

Theore tica l neurophysiology res ts  on certain cardinal assump- 

tions . The  nervous system is  a net of neurons, each having a soma 

and an axon. The ir adjunctions, or synapses, are always between the  

axon of one neuron and the  soma of another. At any ins ta n t a neuron 

has some threshold, which excitation must exceed to in itia te  an im- 

pulse. This , except for the  fa c t and the  time  of its  occurrence, is  de- 

te rmined by the  neuron, not by the  excitation. From the  point of ex- 

citation the  impuls e  is  propagated to all parts of the  neuron. The  

ve locity along the  axon varies  directly with its  diameter, from le s s  

than one meter per second in  thin axons, which are usually short, to 

more than 150 meters per second in  thick axons, which are usually 

long . The  time  for axonal conduction is  consequently of little  impor- 

tance  in  determining the  time  of arrival of impuls e s  at points un- 

equally remote  from the  same source. Excitation across synapses oc- 

curs predominantly from axonal te rmina tions  to somata. It is  still a 

moot point whether this  depends upon irre c iproc ity of ind ividua l syn- 

apses or merely upon prevalent anatomical configurations. To sup- 

pose the  la tte r requires  no hypothesis ad hoc and explains known ex- 

ceptions, but any assumption as to cause is  compatible with the  cal- 

culus to come. No case is  known in  which excitation through a single 

synapse has elicited a nervous impuls e  in  any neuron, whereas  any 

115 
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Training: trying to minimize |D : H |
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Familiar examples

Center embedding

The mouse [the cat [the dog [the bee stung] bit] chased] ran
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Familiar examples

Center embedding

The mouse [the cat [the dog [the bee stung] bit] chased] ran

Agreement attraction

The little duck [that met the horses with the blue spots who were eating
apples] *are/✓is jumping

Humans

The best explanation for human behavior distinguishes between
competence and performance

LLMs

No evidence for difficulty in LLMs

And their errors are competence errors
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Correct vs. probable

Probable Improbable

Correct
Kim danced The lettuce the cabbage

saw absconded

Incorrect
The key to the cabinets The a dog saw

were missing
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Correct vs. probable

Probable Improbable

Correct
Kim danced The lettuce the cabbage

saw absconded

Incorrect
The key to the cabinets The a dog saw

were missing

The distinction between correctness and probability is fundamental to
humans

Well beyond language: art, moral judgments, science, . . .

LLMs only output probabilities

The implications for the role of LLMs in society are worrying
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A simple pattern

Puzzle

aabbbccddd
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A simple pattern

Puzzle

aabbbccddd, abbcdd, abcd, aaaabccccd, aabbccdd, aaabbbbbcccddddd,
aaabcccd

Solution

a
i
b
j
c
i
d
j
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ChatGPT as scientist
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The missing ingredient: simplicity

LLMs miss half the picture

The failure of ChatGPT is not an accident

Recall: LLMs minimize |D : H|

To be good scientists, LLMs would need to
perform inference to the best explanation
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The missing ingredient: simplicity

LLMs miss half the picture

The failure of ChatGPT is not an accident

Recall: LLMs minimize |D : H|

To be good scientists, LLMs would need to
perform inference to the best explanation

Reminder: ITTBE

arg min
H∈H

|H|+ |D : H|

19 / 36



Neural networks can be better scientists with ITTBE1

1Lan et al. (2022, 2024a); Abudy et al. (2025)
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Some phenomena
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Across-the-board movement
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Parasitic gaps
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That-trace effects
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Inference to the best explanation in light of the typology

Multiple interacting factors

Programming language

Learning algorithm

Processing mechanisms

Communicative pressure

. . .
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Some key aspects of competence

Constituency

(1) [John will [talk [to [Kim]]]]

a. Talk to Kim, John will

b. * Talk to, John will Kim
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(1) [John will [talk [to [Kim]]]]

a. Talk to Kim, John will

b. * Talk to, John will Kim

Entailment

(2) Kim spoke to ✓every/∗some student who
ever smoked

Modularity

(3) Kim only has (*more than) THREE
children
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Concluding remarks

The LLM theory fails at explanation

Architecture: competence vs. performance, correctness vs. likelihood

They learn in a way that neglects |H|

Their programming language is non-human-like
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Concluding remarks

The LLM theory fails at explanation

Architecture: competence vs. performance, correctness vs. likelihood

They learn in a way that neglects |H|

Their programming language is non-human-like

The proxy view is potentially interesting, but. . .

What target theory is it meant to support?

So far, no challenges to linguistic theory
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Thank you!
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