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Stochastic parrots? A refutation of generative linguistics?

On the Dangers of Stochastic Parrots:
Can Language Models Be Too Big? i

The neural architecture of language: Integrative
modeling converges on predictive processing
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Modern language models refute
Chomsky’s approach to language
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Feature Review
Dissociating language and thought in large
language models
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Science vs engineering: flying

Relevance?

@ The biplane theory

@ The proxy view
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Science vs engineering: thinking

Relevance?

@ The LLM theory

@ The proxy view

Further discussion |
Katzir (2023), Fox and Katzir (2024), Lan et al. (2024b), Ziv et al. (2025)
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Scientific explanation: a reminder

Inference to the best explanation (ITTBE)

@ Science aims to explain, not to approximate surface
frequencies

@ Laws are isolatable parts of best explanations

@ A law might hold but be obscured on the surface
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Scientific explanation: a reminder

Inference to the best explanation (ITTBE)

@ Science aims to explain, not to approximate surface
frequencies

@ Laws are isolatable parts of best explanations

@ A law might hold but be obscured on the surface

One statement of ITTBE
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A first step toward explaining human linguistic cognition

Discrete unboundedness
A turtle is dancing on the roof J
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A first step toward explaining human linguistic cognition

Discrete unboundedness

Kim claims that if a flying turtle is dancing angrily on the roof or a
three-tailed zebra is sitting in the corner then it is going to snow ...

The Computational Hypothesis

Certain aspects of the linguistic competence of a native speaker of a
language can be characterized as a computer program.
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What everyone can agree on

Reverse engineering human linguistic cognition

If part of linguistic competence is a computer
program, we can try to figure out this program and
reverse-engineer the computer on which it is run
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What everyone can agree on

Reverse engineering human linguistic cognition

If part of linguistic competence is a computer
program, we can try to figure out this program and
reverse-engineer the computer on which it is run

Core parts of the computer
@ Programming language
@ Learning algorithm
@ Processing mechanisms

Universal Grammar

All humans are born with the same programming
language and learning algorithm

7/36



© Large language models
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Language models

S = Where are we going
Previous words
{Context)

word being
predicted

P(S) = P(Wnere) x P(are | Where) x P(we | Where are) x P{going | Where are we)

Da
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Artificial neural

networks
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Training: trying to minimize |D : H|

Loss

Backpropagation




© Two architectural considerations
@ Competence vs. performance
@ Correctness vs. likelihood
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Familiar examples

Center embedding
The mouse [the cat [the dog [the bee stung] bit] chased] ran J
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Familiar examples

Center embedding
The mouse [the cat [the dog [the bee stung] bit] chased] ran

Agreement attraction

The little duck [that met the horses with the blue spots who were eating
apples] *are/V'is jumping

Humans

The best explanation for human behavior distinguishes between
competence and performance

LLMs
@ No evidence for difficulty in LLMs

@ And their errors are competence errors
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© Large language models

© Two architectural considerations

@ Correctness vs. likelihood

© Objective function

@ Representations

© Concluding remarks
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Correct vs. probable

Probable Improbable
Kim danced The lettuce the cabbage
Correct
saw absconded
The key to the cabinets The a dog saw
Incorrect ..
were missing
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Correct vs. probable

Probable Improbable
Kim danced The lettuce the cabbage
Correct
saw absconded
The key to the cabinets The a dog saw
Incorrect ..
were missing

@ The distinction between correctness and probability is fundamental to
humans

@ Well beyond language: art, moral judgments, science, ...
@ LLMs only output probabilities

@ The implications for the role of LLMs in society are worrying
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© Objective function
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A simple pattern

aabbbccddd

o>
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A simple pattern

Puzzle

aabbbccddd, abbcdd, abcd, aaaabccced, aabbececdd, aaabbbbbcccddddd,
aaabcccd )
Solution

abcd )
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ChatGPT as scientist

Model: GPT-4

H Here are a few strings that follow a certain pattern: aabbbceddd, abbedd, abed, aaaabecced,
aabbcedd, aaabbbbbeccddddd, aaabeced. Can you list five other strings that follow the
same pattern?

E Sure! The pattern seems to be a string with increasing consecutive occurrences of each
letter in the alphabet starting from 'a’. Here are five other strings that follow the same
pattern:

. aabbcceddddeeeee

. aaabbbbceccdd
aabccddeee

. aabbccdde

. aaabbbbeccccdddddd

m oW e

m Another string following the same pattern starts like this: aaaaabbc. Can you complete the
string?

Certainly! Following the pattern of increasing consecutive occurrences of each letter in the

alphabet starting from ‘a’, the completed string would be: aaaaabbcddddeceeeee,




The missing ingredient: simplicity

LLMs miss half the picture
@ The failure of ChatGPT is not an accident
@ Recall: LLMs minimize |D : H|

@ To be good scientists, LLMs would need to
perform inference to the best explanation
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The missing ingredient: simplicity

LLMs miss half the picture
@ The failure of ChatGPT is not an accident
@ Recall: LLMs minimize |D : H|

@ To be good scientists, LLMs would need to
perform inference to the best explanation

Reminder: ITTBE
min |H| + |D :
arg min |H| +|D : H|
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Neural networks can be better scientists with ITTBE!

Minimum Description Length Recurrent Neural Networks

Nur Lan'?, Michal Geyer’, Emmanuel Chemla' ", Roni Katzir*
'Ecole Normale Supérieure, France
*Tel Aviv University, lsrael
'EHESS, PSL University, CNRS

{nlan, chemla}dens.fr
eyerfmail. tau.ac.il

rkatzirBtauex.tau.ac.il

Abstract

We train neural networks 1o optimize a Min-
imum Description Length score, that is. to
halance between the complexity of the pet-
work and its accuracy at o task. We show
that networks optimizing this objective func-
tion master tasks involving memory challenges
and go beyond contexs-free languages. These
leamers master languages sach as a”h",
a™h"e", ", @B et ™, and they perform
addition. Moreover, they often do so with
100%: accuracy. The networks are small, and
their inner workings are transpasent. We thus
provide formal proofs that their perfect accu-
racy holds not only on a given test set, but
for any input sequence, To our knowledge,
no odher connectionist model has heen shown
o capture the underlying grammars for these
langusges in full generality,

corpora. Moreover, standard regularization tech-
niques fall short in many cases, as we show below,

Second, even when successful, they tend to
produce non-categorical results. That is, they out-

Figure 3: The network found by the MDL leamer for
the a™b™ task, for a training set with data se1 size 500,
See Theorem 4.1 for a description of how this network
aocepts any ao"b” sequence and why it rejects any
other sequence.

put very high probahilities (o target resp

but never 100%. Adequate, human-like general-
ization, on the other hand involves having both
a probabilistic guess (which neural networks can
doj) and, at least in some cases, a clear statement
ofa ical best gue: hich I networks
cannot do).

Third, these networks are often very big, and it
is generally very hard to inspect a given network
and determine what it is that it actually knows
(though sce Lakretz ct al, 2019, for a rocent
suceessful attempt to probe this knowledge in the
context of linguistics),

Some of the challenges above arise from the

!Lan et al. (2022, 2024a); Abudy et al. (2025)
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Table 2: Unit values (columns) during each phase
of a valid a™b" sequence (rows). The second line
for output units, given in bold, indicates the final
normalized probability,
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© Large language models

© Two architectural considerations

© Objective function

@ Representations
@ Alignment with the stimulus

© Concluding remarks
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Some phenomena

Phenomenon

Example (Grammatical/*Ungrammatical)

Across-the-board
movement (ATB)

Which boy did you say that Kim hated and that Mary
loved yesterday?

* Which boy did you say that Kim hated and that Mary
loved Ann yesterday?

Parasitic gaps
(PG)

I know who John’s talking to is going to annoy soon.

* | know who John’s talking to is going to annoy you
soon.

That-trace effects
(TTE)

* Who did you say that loves Sue?
Who did you say that Sue loves?
Who did you say loves Sue?

Who did you say Sue loves?

u}
)
I
il
it

Dac
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Across-the-board movement
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Parasitic gaps

Average model accuracy and training size - PG
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That-trace effects

Average model accuracy and training size - TTE
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© Large language models

© Two architectural considerations

© Objective function
@ Representations
@ Typology

© Concluding remarks
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Inference to the best explanation in light of the typology

Multiple interacting factors
@ Programming language
@ Learning algorithm

@ Processing mechanisms

o Communicative pressure
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Some key aspects of competence

Constituency
(1) [John will [talk [to [Kim]]]]
a. Talk to Kim, John will
b. * Talk to, John will Kim
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Some key aspects of competence

Constituency
(1) [John will [talk [to [Kim]]]]
a. Talk to Kim, John will
b. * Talk to, John will Kim

Entailment

(2) Kim spoke to v'every/+some student who
ever smoked

Modularity

(3) Kim only has (*more than) THREE
children

28/36



© Concluding remarks
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Concluding remarks

The LLM theory fails at explanation
@ Architecture: competence vs. performance, correctness vs. likelihood
@ They learn in a way that neglects |H|

@ Their programming language is non-human-like
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Concluding remarks

The LLM theory fails at explanation
@ Architecture: competence vs. performance, correctness vs. likelihood
@ They learn in a way that neglects |H|

@ Their programming language is non-human-like

The proxy view is potentially interesting, but. ..
@ What target theory is it meant to support?

@ So far, no challenges to linguistic theory
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Thank you!
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